Aromātai
\frac{17}{12}\approx 1.416666667
Tauwehe
\frac{17}{2 ^ {2} \cdot 3} = 1\frac{5}{12} = 1.4166666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}-\frac{3}{2}\left(\frac{4}{6}-\frac{9}{6}\right)+\frac{1}{3}\left(\frac{3}{2}-3\right)
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{2}{3} me \frac{3}{2} ki te hautau me te tautūnga 6.
\frac{2}{3}-\frac{3}{2}\times \frac{4-9}{6}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Tā te mea he rite te tauraro o \frac{4}{6} me \frac{9}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{3}-\frac{3}{2}\left(-\frac{5}{6}\right)+\frac{1}{3}\left(\frac{3}{2}-3\right)
Tangohia te 9 i te 4, ka -5.
\frac{2}{3}-\frac{3\left(-5\right)}{2\times 6}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Me whakarea te \frac{3}{2} ki te -\frac{5}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{3}-\frac{-15}{12}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Mahia ngā whakarea i roto i te hautanga \frac{3\left(-5\right)}{2\times 6}.
\frac{2}{3}-\left(-\frac{5}{4}\right)+\frac{1}{3}\left(\frac{3}{2}-3\right)
Whakahekea te hautanga \frac{-15}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{2}{3}+\frac{5}{4}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Ko te tauaro o -\frac{5}{4} ko \frac{5}{4}.
\frac{8}{12}+\frac{15}{12}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{2}{3} me \frac{5}{4} ki te hautau me te tautūnga 12.
\frac{8+15}{12}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{15}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{23}{12}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Tāpirihia te 8 ki te 15, ka 23.
\frac{23}{12}+\frac{1}{3}\left(\frac{3}{2}-\frac{6}{2}\right)
Me tahuri te 3 ki te hautau \frac{6}{2}.
\frac{23}{12}+\frac{1}{3}\times \frac{3-6}{2}
Tā te mea he rite te tauraro o \frac{3}{2} me \frac{6}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{23}{12}+\frac{1}{3}\left(-\frac{3}{2}\right)
Tangohia te 6 i te 3, ka -3.
\frac{23}{12}+\frac{1\left(-3\right)}{3\times 2}
Me whakarea te \frac{1}{3} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{23}{12}+\frac{-3}{6}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-3\right)}{3\times 2}.
\frac{23}{12}-\frac{1}{2}
Whakahekea te hautanga \frac{-3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{23}{12}-\frac{6}{12}
Ko te maha noa iti rawa atu o 12 me 2 ko 12. Me tahuri \frac{23}{12} me \frac{1}{2} ki te hautau me te tautūnga 12.
\frac{23-6}{12}
Tā te mea he rite te tauraro o \frac{23}{12} me \frac{6}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{17}{12}
Tangohia te 6 i te 23, ka 17.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}