Whakaoti mō x
x=9
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 2 } { 3 } ( x - 3 ) = \frac { 1 } { 4 } ( x + 7 )
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}x+\frac{2}{3}\left(-3\right)=\frac{1}{4}\left(x+7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x-3.
\frac{2}{3}x+\frac{2\left(-3\right)}{3}=\frac{1}{4}\left(x+7\right)
Tuhia te \frac{2}{3}\left(-3\right) hei hautanga kotahi.
\frac{2}{3}x+\frac{-6}{3}=\frac{1}{4}\left(x+7\right)
Whakareatia te 2 ki te -3, ka -6.
\frac{2}{3}x-2=\frac{1}{4}\left(x+7\right)
Whakawehea te -6 ki te 3, kia riro ko -2.
\frac{2}{3}x-2=\frac{1}{4}x+\frac{1}{4}\times 7
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te x+7.
\frac{2}{3}x-2=\frac{1}{4}x+\frac{7}{4}
Whakareatia te \frac{1}{4} ki te 7, ka \frac{7}{4}.
\frac{2}{3}x-2-\frac{1}{4}x=\frac{7}{4}
Tangohia te \frac{1}{4}x mai i ngā taha e rua.
\frac{5}{12}x-2=\frac{7}{4}
Pahekotia te \frac{2}{3}x me -\frac{1}{4}x, ka \frac{5}{12}x.
\frac{5}{12}x=\frac{7}{4}+2
Me tāpiri te 2 ki ngā taha e rua.
\frac{5}{12}x=\frac{7}{4}+\frac{8}{4}
Me tahuri te 2 ki te hautau \frac{8}{4}.
\frac{5}{12}x=\frac{7+8}{4}
Tā te mea he rite te tauraro o \frac{7}{4} me \frac{8}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{12}x=\frac{15}{4}
Tāpirihia te 7 ki te 8, ka 15.
x=\frac{15}{4}\times \frac{12}{5}
Me whakarea ngā taha e rua ki te \frac{12}{5}, te tau utu o \frac{5}{12}.
x=\frac{15\times 12}{4\times 5}
Me whakarea te \frac{15}{4} ki te \frac{12}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{180}{20}
Mahia ngā whakarea i roto i te hautanga \frac{15\times 12}{4\times 5}.
x=9
Whakawehea te 180 ki te 20, kia riro ko 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}