Whakaoti mō x
x=\frac{1}{5}=0.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}x+\frac{2}{3}\left(-2\right)=\frac{1}{4}\left(x-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x-2.
\frac{2}{3}x+\frac{2\left(-2\right)}{3}=\frac{1}{4}\left(x-5\right)
Tuhia te \frac{2}{3}\left(-2\right) hei hautanga kotahi.
\frac{2}{3}x+\frac{-4}{3}=\frac{1}{4}\left(x-5\right)
Whakareatia te 2 ki te -2, ka -4.
\frac{2}{3}x-\frac{4}{3}=\frac{1}{4}\left(x-5\right)
Ka taea te hautanga \frac{-4}{3} te tuhi anō ko -\frac{4}{3} mā te tango i te tohu tōraro.
\frac{2}{3}x-\frac{4}{3}=\frac{1}{4}x+\frac{1}{4}\left(-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te x-5.
\frac{2}{3}x-\frac{4}{3}=\frac{1}{4}x+\frac{-5}{4}
Whakareatia te \frac{1}{4} ki te -5, ka \frac{-5}{4}.
\frac{2}{3}x-\frac{4}{3}=\frac{1}{4}x-\frac{5}{4}
Ka taea te hautanga \frac{-5}{4} te tuhi anō ko -\frac{5}{4} mā te tango i te tohu tōraro.
\frac{2}{3}x-\frac{4}{3}-\frac{1}{4}x=-\frac{5}{4}
Tangohia te \frac{1}{4}x mai i ngā taha e rua.
\frac{5}{12}x-\frac{4}{3}=-\frac{5}{4}
Pahekotia te \frac{2}{3}x me -\frac{1}{4}x, ka \frac{5}{12}x.
\frac{5}{12}x=-\frac{5}{4}+\frac{4}{3}
Me tāpiri te \frac{4}{3} ki ngā taha e rua.
\frac{5}{12}x=-\frac{15}{12}+\frac{16}{12}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri -\frac{5}{4} me \frac{4}{3} ki te hautau me te tautūnga 12.
\frac{5}{12}x=\frac{-15+16}{12}
Tā te mea he rite te tauraro o -\frac{15}{12} me \frac{16}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{12}x=\frac{1}{12}
Tāpirihia te -15 ki te 16, ka 1.
x=\frac{1}{12}\times \frac{12}{5}
Me whakarea ngā taha e rua ki te \frac{12}{5}, te tau utu o \frac{5}{12}.
x=\frac{1\times 12}{12\times 5}
Me whakarea te \frac{1}{12} ki te \frac{12}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{1}{5}
Me whakakore tahi te 12 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}