Whakaoti mō x
x=\frac{19}{20}=0.95
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}x+\frac{2}{3}\left(-1\right)=\frac{5}{6}\left(3-2x\right)-x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x-1.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{6}\left(3-2x\right)-x
Whakareatia te \frac{2}{3} ki te -1, ka -\frac{2}{3}.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{6}\times 3+\frac{5}{6}\left(-2\right)x-x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{5}{6} ki te 3-2x.
\frac{2}{3}x-\frac{2}{3}=\frac{5\times 3}{6}+\frac{5}{6}\left(-2\right)x-x
Tuhia te \frac{5}{6}\times 3 hei hautanga kotahi.
\frac{2}{3}x-\frac{2}{3}=\frac{15}{6}+\frac{5}{6}\left(-2\right)x-x
Whakareatia te 5 ki te 3, ka 15.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{2}+\frac{5}{6}\left(-2\right)x-x
Whakahekea te hautanga \frac{15}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{2}+\frac{5\left(-2\right)}{6}x-x
Tuhia te \frac{5}{6}\left(-2\right) hei hautanga kotahi.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{2}+\frac{-10}{6}x-x
Whakareatia te 5 ki te -2, ka -10.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{2}-\frac{5}{3}x-x
Whakahekea te hautanga \frac{-10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{2}-\frac{8}{3}x
Pahekotia te -\frac{5}{3}x me -x, ka -\frac{8}{3}x.
\frac{2}{3}x-\frac{2}{3}+\frac{8}{3}x=\frac{5}{2}
Me tāpiri te \frac{8}{3}x ki ngā taha e rua.
\frac{10}{3}x-\frac{2}{3}=\frac{5}{2}
Pahekotia te \frac{2}{3}x me \frac{8}{3}x, ka \frac{10}{3}x.
\frac{10}{3}x=\frac{5}{2}+\frac{2}{3}
Me tāpiri te \frac{2}{3} ki ngā taha e rua.
\frac{10}{3}x=\frac{15}{6}+\frac{4}{6}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{5}{2} me \frac{2}{3} ki te hautau me te tautūnga 6.
\frac{10}{3}x=\frac{15+4}{6}
Tā te mea he rite te tauraro o \frac{15}{6} me \frac{4}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{10}{3}x=\frac{19}{6}
Tāpirihia te 15 ki te 4, ka 19.
x=\frac{19}{6}\times \frac{3}{10}
Me whakarea ngā taha e rua ki te \frac{3}{10}, te tau utu o \frac{10}{3}.
x=\frac{19\times 3}{6\times 10}
Me whakarea te \frac{19}{6} ki te \frac{3}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{57}{60}
Mahia ngā whakarea i roto i te hautanga \frac{19\times 3}{6\times 10}.
x=\frac{19}{20}
Whakahekea te hautanga \frac{57}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}