Whakaoti mō x
x\geq 27
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { 2 } { 3 } ( x + 1 ) - \frac { 5 } { 6 } ( x - 7 ) \leq 2
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}x+\frac{2}{3}-\frac{5}{6}\left(x-7\right)\leq 2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x+1.
\frac{2}{3}x+\frac{2}{3}-\frac{5}{6}x-\frac{5}{6}\left(-7\right)\leq 2
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{5}{6} ki te x-7.
\frac{2}{3}x+\frac{2}{3}-\frac{5}{6}x+\frac{-5\left(-7\right)}{6}\leq 2
Tuhia te -\frac{5}{6}\left(-7\right) hei hautanga kotahi.
\frac{2}{3}x+\frac{2}{3}-\frac{5}{6}x+\frac{35}{6}\leq 2
Whakareatia te -5 ki te -7, ka 35.
-\frac{1}{6}x+\frac{2}{3}+\frac{35}{6}\leq 2
Pahekotia te \frac{2}{3}x me -\frac{5}{6}x, ka -\frac{1}{6}x.
-\frac{1}{6}x+\frac{4}{6}+\frac{35}{6}\leq 2
Ko te maha noa iti rawa atu o 3 me 6 ko 6. Me tahuri \frac{2}{3} me \frac{35}{6} ki te hautau me te tautūnga 6.
-\frac{1}{6}x+\frac{4+35}{6}\leq 2
Tā te mea he rite te tauraro o \frac{4}{6} me \frac{35}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{1}{6}x+\frac{39}{6}\leq 2
Tāpirihia te 4 ki te 35, ka 39.
-\frac{1}{6}x+\frac{13}{2}\leq 2
Whakahekea te hautanga \frac{39}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{1}{6}x\leq 2-\frac{13}{2}
Tangohia te \frac{13}{2} mai i ngā taha e rua.
-\frac{1}{6}x\leq \frac{4}{2}-\frac{13}{2}
Me tahuri te 2 ki te hautau \frac{4}{2}.
-\frac{1}{6}x\leq \frac{4-13}{2}
Tā te mea he rite te tauraro o \frac{4}{2} me \frac{13}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{6}x\leq -\frac{9}{2}
Tangohia te 13 i te 4, ka -9.
x\geq -\frac{9}{2}\left(-6\right)
Me whakarea ngā taha e rua ki te -6, te tau utu o -\frac{1}{6}. I te mea he tōraro a -\frac{1}{6}, ka huri te ahunga koreōrite.
x\geq \frac{-9\left(-6\right)}{2}
Tuhia te -\frac{9}{2}\left(-6\right) hei hautanga kotahi.
x\geq \frac{54}{2}
Whakareatia te -9 ki te -6, ka 54.
x\geq 27
Whakawehea te 54 ki te 2, kia riro ko 27.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}