Whakaoti mō x
x=-\frac{1}{6}\approx -0.166666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}x+\frac{2}{3}\times \frac{1}{8}=\frac{1}{6}x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x+\frac{1}{8}.
\frac{2}{3}x+\frac{2\times 1}{3\times 8}=\frac{1}{6}x
Me whakarea te \frac{2}{3} ki te \frac{1}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{3}x+\frac{2}{24}=\frac{1}{6}x
Mahia ngā whakarea i roto i te hautanga \frac{2\times 1}{3\times 8}.
\frac{2}{3}x+\frac{1}{12}=\frac{1}{6}x
Whakahekea te hautanga \frac{2}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{2}{3}x+\frac{1}{12}-\frac{1}{6}x=0
Tangohia te \frac{1}{6}x mai i ngā taha e rua.
\frac{1}{2}x+\frac{1}{12}=0
Pahekotia te \frac{2}{3}x me -\frac{1}{6}x, ka \frac{1}{2}x.
\frac{1}{2}x=-\frac{1}{12}
Tangohia te \frac{1}{12} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-\frac{1}{12}\times 2
Me whakarea ngā taha e rua ki te 2, te tau utu o \frac{1}{2}.
x=\frac{-2}{12}
Tuhia te -\frac{1}{12}\times 2 hei hautanga kotahi.
x=-\frac{1}{6}
Whakahekea te hautanga \frac{-2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}