Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
8\left(x+\frac{1}{4}\right)=3\left(x-1\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4.
8x+8\times \frac{1}{4}=3\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te x+\frac{1}{4}.
8x+\frac{8}{4}=3\left(x-1\right)
Whakareatia te 8 ki te \frac{1}{4}, ka \frac{8}{4}.
8x+2=3\left(x-1\right)
Whakawehea te 8 ki te 4, kia riro ko 2.
8x+2=3x-3
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
8x+2-3x=-3
Tangohia te 3x mai i ngā taha e rua.
5x+2=-3
Pahekotia te 8x me -3x, ka 5x.
5x=-3-2
Tangohia te 2 mai i ngā taha e rua.
5x=-5
Tangohia te 2 i te -3, ka -5.
x=\frac{-5}{5}
Whakawehea ngā taha e rua ki te 5.
x=-1
Whakawehea te -5 ki te 5, kia riro ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}