Whakaoti mō t
t=-34
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 2 } { 3 } ( t - 2 ) = \frac { 3 } { 4 } ( t + 2 )
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}t+\frac{2}{3}\left(-2\right)=\frac{3}{4}\left(t+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te t-2.
\frac{2}{3}t+\frac{2\left(-2\right)}{3}=\frac{3}{4}\left(t+2\right)
Tuhia te \frac{2}{3}\left(-2\right) hei hautanga kotahi.
\frac{2}{3}t+\frac{-4}{3}=\frac{3}{4}\left(t+2\right)
Whakareatia te 2 ki te -2, ka -4.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}\left(t+2\right)
Ka taea te hautanga \frac{-4}{3} te tuhi anō ko -\frac{4}{3} mā te tango i te tohu tōraro.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{3}{4}\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4} ki te t+2.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{3\times 2}{4}
Tuhia te \frac{3}{4}\times 2 hei hautanga kotahi.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{6}{4}
Whakareatia te 3 ki te 2, ka 6.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{2}{3}t-\frac{4}{3}-\frac{3}{4}t=\frac{3}{2}
Tangohia te \frac{3}{4}t mai i ngā taha e rua.
-\frac{1}{12}t-\frac{4}{3}=\frac{3}{2}
Pahekotia te \frac{2}{3}t me -\frac{3}{4}t, ka -\frac{1}{12}t.
-\frac{1}{12}t=\frac{3}{2}+\frac{4}{3}
Me tāpiri te \frac{4}{3} ki ngā taha e rua.
-\frac{1}{12}t=\frac{9}{6}+\frac{8}{6}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{3}{2} me \frac{4}{3} ki te hautau me te tautūnga 6.
-\frac{1}{12}t=\frac{9+8}{6}
Tā te mea he rite te tauraro o \frac{9}{6} me \frac{8}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{1}{12}t=\frac{17}{6}
Tāpirihia te 9 ki te 8, ka 17.
t=\frac{17}{6}\left(-12\right)
Me whakarea ngā taha e rua ki te -12, te tau utu o -\frac{1}{12}.
t=\frac{17\left(-12\right)}{6}
Tuhia te \frac{17}{6}\left(-12\right) hei hautanga kotahi.
t=\frac{-204}{6}
Whakareatia te 17 ki te -12, ka -204.
t=-34
Whakawehea te -204 ki te 6, kia riro ko -34.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}