Whakaoti mō x
x=\frac{1}{4}=0.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}\times 6+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te 6-x.
\frac{2\times 6}{3}+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
Tuhia te \frac{2}{3}\times 6 hei hautanga kotahi.
\frac{12}{3}+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
Whakareatia te 2 ki te 6, ka 12.
4+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
Whakawehea te 12 ki te 3, kia riro ko 4.
4-\frac{2}{3}x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
Whakareatia te \frac{2}{3} ki te -1, ka -\frac{2}{3}.
4-\frac{2}{3}x-\frac{3}{4}\times 5-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{3}{4} ki te 5-2x.
4-\frac{2}{3}x+\frac{-3\times 5}{4}-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
Tuhia te -\frac{3}{4}\times 5 hei hautanga kotahi.
4-\frac{2}{3}x+\frac{-15}{4}-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
Whakareatia te -3 ki te 5, ka -15.
4-\frac{2}{3}x-\frac{15}{4}-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
Ka taea te hautanga \frac{-15}{4} te tuhi anō ko -\frac{15}{4} mā te tango i te tohu tōraro.
4-\frac{2}{3}x-\frac{15}{4}+\frac{-3\left(-2\right)}{4}x=\frac{1}{6}\left(3-x\right)
Tuhia te -\frac{3}{4}\left(-2\right) hei hautanga kotahi.
4-\frac{2}{3}x-\frac{15}{4}+\frac{6}{4}x=\frac{1}{6}\left(3-x\right)
Whakareatia te -3 ki te -2, ka 6.
4-\frac{2}{3}x-\frac{15}{4}+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{16}{4}-\frac{2}{3}x-\frac{15}{4}+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
Me tahuri te 4 ki te hautau \frac{16}{4}.
\frac{16-15}{4}-\frac{2}{3}x+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
Tā te mea he rite te tauraro o \frac{16}{4} me \frac{15}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{4}-\frac{2}{3}x+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
Tangohia te 15 i te 16, ka 1.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{6}\left(3-x\right)
Pahekotia te -\frac{2}{3}x me \frac{3}{2}x, ka \frac{5}{6}x.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{6}\times 3+\frac{1}{6}\left(-1\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{6} ki te 3-x.
\frac{1}{4}+\frac{5}{6}x=\frac{3}{6}+\frac{1}{6}\left(-1\right)x
Whakareatia te \frac{1}{6} ki te 3, ka \frac{3}{6}.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{2}+\frac{1}{6}\left(-1\right)x
Whakahekea te hautanga \frac{3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{2}-\frac{1}{6}x
Whakareatia te \frac{1}{6} ki te -1, ka -\frac{1}{6}.
\frac{1}{4}+\frac{5}{6}x+\frac{1}{6}x=\frac{1}{2}
Me tāpiri te \frac{1}{6}x ki ngā taha e rua.
\frac{1}{4}+x=\frac{1}{2}
Pahekotia te \frac{5}{6}x me \frac{1}{6}x, ka x.
x=\frac{1}{2}-\frac{1}{4}
Tangohia te \frac{1}{4} mai i ngā taha e rua.
x=\frac{2}{4}-\frac{1}{4}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{1}{2} me \frac{1}{4} ki te hautau me te tautūnga 4.
x=\frac{2-1}{4}
Tā te mea he rite te tauraro o \frac{2}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
x=\frac{1}{4}
Tangohia te 1 i te 2, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}