Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(4x-1\right)-6\left(4x-\frac{1-3x}{2}\right)=3\left(x-7\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
16x-4-6\left(4x-\frac{1-3x}{2}\right)=3\left(x-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 4x-1.
16x-4-6\left(4x-\frac{1-3x}{2}\right)=3x-21
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-7.
16x-4-6\left(4x-\left(\frac{1}{2}-\frac{3}{2}x\right)\right)=3x-21
Whakawehea ia wā o 1-3x ki te 2, kia riro ko \frac{1}{2}-\frac{3}{2}x.
16x-4-6\left(4x-\frac{1}{2}-\left(-\frac{3}{2}x\right)\right)=3x-21
Hei kimi i te tauaro o \frac{1}{2}-\frac{3}{2}x, kimihia te tauaro o ia taurangi.
16x-4-6\left(4x-\frac{1}{2}+\frac{3}{2}x\right)=3x-21
Ko te tauaro o -\frac{3}{2}x ko \frac{3}{2}x.
16x-4-6\left(\frac{11}{2}x-\frac{1}{2}\right)=3x-21
Pahekotia te 4x me \frac{3}{2}x, ka \frac{11}{2}x.
16x-4-6\times \frac{11}{2}x-6\left(-\frac{1}{2}\right)=3x-21
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te \frac{11}{2}x-\frac{1}{2}.
16x-4+\frac{-6\times 11}{2}x-6\left(-\frac{1}{2}\right)=3x-21
Tuhia te -6\times \frac{11}{2} hei hautanga kotahi.
16x-4+\frac{-66}{2}x-6\left(-\frac{1}{2}\right)=3x-21
Whakareatia te -6 ki te 11, ka -66.
16x-4-33x-6\left(-\frac{1}{2}\right)=3x-21
Whakawehea te -66 ki te 2, kia riro ko -33.
16x-4-33x+\frac{-6\left(-1\right)}{2}=3x-21
Tuhia te -6\left(-\frac{1}{2}\right) hei hautanga kotahi.
16x-4-33x+\frac{6}{2}=3x-21
Whakareatia te -6 ki te -1, ka 6.
16x-4-33x+3=3x-21
Whakawehea te 6 ki te 2, kia riro ko 3.
-17x-4+3=3x-21
Pahekotia te 16x me -33x, ka -17x.
-17x-1=3x-21
Tāpirihia te -4 ki te 3, ka -1.
-17x-1-3x=-21
Tangohia te 3x mai i ngā taha e rua.
-20x-1=-21
Pahekotia te -17x me -3x, ka -20x.
-20x=-21+1
Me tāpiri te 1 ki ngā taha e rua.
-20x=-20
Tāpirihia te -21 ki te 1, ka -20.
x=\frac{-20}{-20}
Whakawehea ngā taha e rua ki te -20.
x=1
Whakawehea te -20 ki te -20, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}