Aromātai
\frac{75}{4}=18.75
Tauwehe
\frac{3 \cdot 5 ^ {2}}{2 ^ {2}} = 18\frac{3}{4} = 18.75
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\times 15}{3}\times \frac{1\times 8+7}{8}
Tuhia te \frac{2}{3}\times 15 hei hautanga kotahi.
\frac{30}{3}\times \frac{1\times 8+7}{8}
Whakareatia te 2 ki te 15, ka 30.
10\times \frac{1\times 8+7}{8}
Whakawehea te 30 ki te 3, kia riro ko 10.
10\times \frac{8+7}{8}
Whakareatia te 1 ki te 8, ka 8.
10\times \frac{15}{8}
Tāpirihia te 8 ki te 7, ka 15.
\frac{10\times 15}{8}
Tuhia te 10\times \frac{15}{8} hei hautanga kotahi.
\frac{150}{8}
Whakareatia te 10 ki te 15, ka 150.
\frac{75}{4}
Whakahekea te hautanga \frac{150}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}