Aromātai
\frac{7}{30}\approx 0.233333333
Tauwehe
\frac{7}{2 \cdot 3 \cdot 5} = 0.23333333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}\times \frac{4+1}{4}-\frac{\frac{1\times 5+1}{5}}{2}
Whakareatia te 1 ki te 4, ka 4.
\frac{2}{3}\times \frac{5}{4}-\frac{\frac{1\times 5+1}{5}}{2}
Tāpirihia te 4 ki te 1, ka 5.
\frac{2\times 5}{3\times 4}-\frac{\frac{1\times 5+1}{5}}{2}
Me whakarea te \frac{2}{3} ki te \frac{5}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{10}{12}-\frac{\frac{1\times 5+1}{5}}{2}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 5}{3\times 4}.
\frac{5}{6}-\frac{\frac{1\times 5+1}{5}}{2}
Whakahekea te hautanga \frac{10}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{6}-\frac{1\times 5+1}{5\times 2}
Tuhia te \frac{\frac{1\times 5+1}{5}}{2} hei hautanga kotahi.
\frac{5}{6}-\frac{5+1}{5\times 2}
Whakareatia te 1 ki te 5, ka 5.
\frac{5}{6}-\frac{6}{5\times 2}
Tāpirihia te 5 ki te 1, ka 6.
\frac{5}{6}-\frac{6}{10}
Whakareatia te 5 ki te 2, ka 10.
\frac{5}{6}-\frac{3}{5}
Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{25}{30}-\frac{18}{30}
Ko te maha noa iti rawa atu o 6 me 5 ko 30. Me tahuri \frac{5}{6} me \frac{3}{5} ki te hautau me te tautūnga 30.
\frac{25-18}{30}
Tā te mea he rite te tauraro o \frac{25}{30} me \frac{18}{30}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{30}
Tangohia te 18 i te 25, ka 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}