Aromātai
\frac{109}{90}\approx 1.211111111
Tauwehe
\frac{109}{2 \cdot 3 ^ {2} \cdot 5} = 1\frac{19}{90} = 1.211111111111111
Pātaitai
Arithmetic
\frac { 2 } { 3 } \times ( 2 - 5 \frac { 1 } { 2 } \div 2 \frac { 4 / 4 } { 15 } )
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}\left(2-\frac{\frac{5\times 2+1}{2}}{2}\times \frac{1}{15}\right)
Whakawehea te 4 ki te 4, kia riro ko 1.
\frac{2}{3}\left(2-\frac{5\times 2+1}{2\times 2}\times \frac{1}{15}\right)
Tuhia te \frac{\frac{5\times 2+1}{2}}{2} hei hautanga kotahi.
\frac{2}{3}\left(2-\frac{10+1}{2\times 2}\times \frac{1}{15}\right)
Whakareatia te 5 ki te 2, ka 10.
\frac{2}{3}\left(2-\frac{11}{2\times 2}\times \frac{1}{15}\right)
Tāpirihia te 10 ki te 1, ka 11.
\frac{2}{3}\left(2-\frac{11}{4}\times \frac{1}{15}\right)
Whakareatia te 2 ki te 2, ka 4.
\frac{2}{3}\left(2-\frac{11\times 1}{4\times 15}\right)
Me whakarea te \frac{11}{4} ki te \frac{1}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{3}\left(2-\frac{11}{60}\right)
Mahia ngā whakarea i roto i te hautanga \frac{11\times 1}{4\times 15}.
\frac{2}{3}\left(\frac{120}{60}-\frac{11}{60}\right)
Me tahuri te 2 ki te hautau \frac{120}{60}.
\frac{2}{3}\times \frac{120-11}{60}
Tā te mea he rite te tauraro o \frac{120}{60} me \frac{11}{60}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{3}\times \frac{109}{60}
Tangohia te 11 i te 120, ka 109.
\frac{2\times 109}{3\times 60}
Me whakarea te \frac{2}{3} ki te \frac{109}{60} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{218}{180}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 109}{3\times 60}.
\frac{109}{90}
Whakahekea te hautanga \frac{218}{180} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}