Aromātai
\frac{4\sqrt{10}}{3}\approx 4.216370214
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2}{3}\times 2\sqrt{5}\times \frac{1}{3}\sqrt{48}}{\sqrt{\frac{2\times 3+2}{3}}}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
\frac{\frac{2\times 2}{3}\sqrt{5}\times \frac{1}{3}\sqrt{48}}{\sqrt{\frac{2\times 3+2}{3}}}
Tuhia te \frac{2}{3}\times 2 hei hautanga kotahi.
\frac{\frac{4}{3}\sqrt{5}\times \frac{1}{3}\sqrt{48}}{\sqrt{\frac{2\times 3+2}{3}}}
Whakareatia te 2 ki te 2, ka 4.
\frac{\frac{4\times 1}{3\times 3}\sqrt{5}\sqrt{48}}{\sqrt{\frac{2\times 3+2}{3}}}
Me whakarea te \frac{4}{3} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{4}{9}\sqrt{5}\sqrt{48}}{\sqrt{\frac{2\times 3+2}{3}}}
Mahia ngā whakarea i roto i te hautanga \frac{4\times 1}{3\times 3}.
\frac{\frac{4}{9}\sqrt{5}\times 4\sqrt{3}}{\sqrt{\frac{2\times 3+2}{3}}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{\frac{4\times 4}{9}\sqrt{5}\sqrt{3}}{\sqrt{\frac{2\times 3+2}{3}}}
Tuhia te \frac{4}{9}\times 4 hei hautanga kotahi.
\frac{\frac{16}{9}\sqrt{5}\sqrt{3}}{\sqrt{\frac{2\times 3+2}{3}}}
Whakareatia te 4 ki te 4, ka 16.
\frac{\frac{16}{9}\sqrt{15}}{\sqrt{\frac{2\times 3+2}{3}}}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\frac{16}{9}\sqrt{15}}{\sqrt{\frac{6+2}{3}}}
Whakareatia te 2 ki te 3, ka 6.
\frac{\frac{16}{9}\sqrt{15}}{\sqrt{\frac{8}{3}}}
Tāpirihia te 6 ki te 2, ka 8.
\frac{\frac{16}{9}\sqrt{15}}{\frac{\sqrt{8}}{\sqrt{3}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{8}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{8}}{\sqrt{3}}.
\frac{\frac{16}{9}\sqrt{15}}{\frac{2\sqrt{2}}{\sqrt{3}}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{\frac{16}{9}\sqrt{15}}{\frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{2\sqrt{2}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\frac{16}{9}\sqrt{15}}{\frac{2\sqrt{2}\sqrt{3}}{3}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\frac{16}{9}\sqrt{15}}{\frac{2\sqrt{6}}{3}}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\frac{16}{9}\sqrt{15}\times 3}{2\sqrt{6}}
Whakawehe \frac{16}{9}\sqrt{15} ki te \frac{2\sqrt{6}}{3} mā te whakarea \frac{16}{9}\sqrt{15} ki te tau huripoki o \frac{2\sqrt{6}}{3}.
\frac{\frac{16}{9}\sqrt{15}\times 3\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\frac{16}{9}\sqrt{15}\times 3}{2\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{\frac{16}{9}\sqrt{15}\times 3\sqrt{6}}{2\times 6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\frac{16\times 3}{9}\sqrt{15}\sqrt{6}}{2\times 6}
Tuhia te \frac{16}{9}\times 3 hei hautanga kotahi.
\frac{\frac{48}{9}\sqrt{15}\sqrt{6}}{2\times 6}
Whakareatia te 16 ki te 3, ka 48.
\frac{\frac{16}{3}\sqrt{15}\sqrt{6}}{2\times 6}
Whakahekea te hautanga \frac{48}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\frac{16}{3}\sqrt{90}}{2\times 6}
Hei whakarea \sqrt{15} me \sqrt{6}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\frac{16}{3}\sqrt{90}}{12}
Whakareatia te 2 ki te 6, ka 12.
\frac{\frac{16}{3}\times 3\sqrt{10}}{12}
Tauwehea te 90=3^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 10} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{10}. Tuhia te pūtakerua o te 3^{2}.
\frac{16\sqrt{10}}{12}
Me whakakore te 3 me te 3.
\frac{4}{3}\sqrt{10}
Whakawehea te 16\sqrt{10} ki te 12, kia riro ko \frac{4}{3}\sqrt{10}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}