Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2}{3}\sqrt{\frac{2}{9}}\times \frac{3}{4}
Hei whakarea \sqrt{\frac{7}{15}} me \sqrt{\frac{10}{21}}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2}{3}\times \frac{\sqrt{2}}{\sqrt{9}}\times \frac{3}{4}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2}{9}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2}}{\sqrt{9}}.
\frac{2}{3}\times \frac{\sqrt{2}}{3}\times \frac{3}{4}
Tātaitia te pūtakerua o 9 kia tae ki 3.
\frac{2\times 3}{3\times 4}\times \frac{\sqrt{2}}{3}
Me whakarea te \frac{2}{3} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{4}\times \frac{\sqrt{2}}{3}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{1}{2}\times \frac{\sqrt{2}}{3}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\sqrt{2}}{2\times 3}
Me whakarea te \frac{1}{2} ki te \frac{\sqrt{2}}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{2}}{6}
Whakareatia te 2 ki te 3, ka 6.