Whakaoti mō x
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}x+\frac{2}{3}=\frac{1}{6}\left(x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x+1.
\frac{2}{3}x+\frac{2}{3}=\frac{1}{6}x+\frac{1}{6}\left(-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{6} ki te x-2.
\frac{2}{3}x+\frac{2}{3}=\frac{1}{6}x+\frac{-2}{6}
Whakareatia te \frac{1}{6} ki te -2, ka \frac{-2}{6}.
\frac{2}{3}x+\frac{2}{3}=\frac{1}{6}x-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{2}{3}x+\frac{2}{3}-\frac{1}{6}x=-\frac{1}{3}
Tangohia te \frac{1}{6}x mai i ngā taha e rua.
\frac{1}{2}x+\frac{2}{3}=-\frac{1}{3}
Pahekotia te \frac{2}{3}x me -\frac{1}{6}x, ka \frac{1}{2}x.
\frac{1}{2}x=-\frac{1}{3}-\frac{2}{3}
Tangohia te \frac{2}{3} mai i ngā taha e rua.
\frac{1}{2}x=\frac{-1-2}{3}
Tā te mea he rite te tauraro o -\frac{1}{3} me \frac{2}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}x=\frac{-3}{3}
Tangohia te 2 i te -1, ka -3.
\frac{1}{2}x=-1
Whakawehea te -3 ki te 3, kia riro ko -1.
x=-2
Me whakarea ngā taha e rua ki te 2, te tau utu o \frac{1}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}