Aromātai
\frac{7a}{6}-\frac{41b}{12}
Whakaroha
\frac{7a}{6}-\frac{41b}{12}
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}\times 4a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te 4a-3b.
\frac{2\times 4}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Tuhia te \frac{2}{3}\times 4 hei hautanga kotahi.
\frac{8}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Whakareatia te 2 ki te 4, ka 8.
\frac{8}{3}a+\frac{2\left(-3\right)}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Tuhia te \frac{2}{3}\left(-3\right) hei hautanga kotahi.
\frac{8}{3}a+\frac{-6}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Whakareatia te 2 ki te -3, ka -6.
\frac{8}{3}a-2b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Whakawehea te -6 ki te 3, kia riro ko -2.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\left(6a+7b\right)
Pahekotia te -2b me \frac{1}{3}b, ka -\frac{5}{3}b.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\times 6a-\frac{1}{4}\times 7b
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{4} ki te 6a+7b.
\frac{8}{3}a-\frac{5}{3}b+\frac{-6}{4}a-\frac{1}{4}\times 7b
Tuhia te -\frac{1}{4}\times 6 hei hautanga kotahi.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{1}{4}\times 7b
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a+\frac{-7}{4}b
Tuhia te -\frac{1}{4}\times 7 hei hautanga kotahi.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{7}{4}b
Ka taea te hautanga \frac{-7}{4} te tuhi anō ko -\frac{7}{4} mā te tango i te tohu tōraro.
\frac{7}{6}a-\frac{5}{3}b-\frac{7}{4}b
Pahekotia te \frac{8}{3}a me -\frac{3}{2}a, ka \frac{7}{6}a.
\frac{7}{6}a-\frac{41}{12}b
Pahekotia te -\frac{5}{3}b me -\frac{7}{4}b, ka -\frac{41}{12}b.
\frac{2}{3}\times 4a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te 4a-3b.
\frac{2\times 4}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Tuhia te \frac{2}{3}\times 4 hei hautanga kotahi.
\frac{8}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Whakareatia te 2 ki te 4, ka 8.
\frac{8}{3}a+\frac{2\left(-3\right)}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Tuhia te \frac{2}{3}\left(-3\right) hei hautanga kotahi.
\frac{8}{3}a+\frac{-6}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Whakareatia te 2 ki te -3, ka -6.
\frac{8}{3}a-2b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Whakawehea te -6 ki te 3, kia riro ko -2.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\left(6a+7b\right)
Pahekotia te -2b me \frac{1}{3}b, ka -\frac{5}{3}b.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\times 6a-\frac{1}{4}\times 7b
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{4} ki te 6a+7b.
\frac{8}{3}a-\frac{5}{3}b+\frac{-6}{4}a-\frac{1}{4}\times 7b
Tuhia te -\frac{1}{4}\times 6 hei hautanga kotahi.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{1}{4}\times 7b
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a+\frac{-7}{4}b
Tuhia te -\frac{1}{4}\times 7 hei hautanga kotahi.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{7}{4}b
Ka taea te hautanga \frac{-7}{4} te tuhi anō ko -\frac{7}{4} mā te tango i te tohu tōraro.
\frac{7}{6}a-\frac{5}{3}b-\frac{7}{4}b
Pahekotia te \frac{8}{3}a me -\frac{3}{2}a, ka \frac{7}{6}a.
\frac{7}{6}a-\frac{41}{12}b
Pahekotia te -\frac{5}{3}b me -\frac{7}{4}b, ka -\frac{41}{12}b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}