Whakaoti mō b
b=-\frac{1}{3}\approx -0.333333333
b=3
Tohaina
Kua tāruatia ki te papatopenga
8b=3\left(b^{2}-1\right)
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12b, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4b.
8b=3b^{2}-3
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te b^{2}-1.
8b-3b^{2}=-3
Tangohia te 3b^{2} mai i ngā taha e rua.
8b-3b^{2}+3=0
Me tāpiri te 3 ki ngā taha e rua.
-3b^{2}+8b+3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=8 ab=-3\times 3=-9
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3b^{2}+ab+bb+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,9 -3,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -9.
-1+9=8 -3+3=0
Tātaihia te tapeke mō ia takirua.
a=9 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(-3b^{2}+9b\right)+\left(-b+3\right)
Tuhia anō te -3b^{2}+8b+3 hei \left(-3b^{2}+9b\right)+\left(-b+3\right).
3b\left(-b+3\right)-b+3
Whakatauwehea atu 3b i te -3b^{2}+9b.
\left(-b+3\right)\left(3b+1\right)
Whakatauwehea atu te kīanga pātahi -b+3 mā te whakamahi i te āhuatanga tātai tohatoha.
b=3 b=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te -b+3=0 me te 3b+1=0.
8b=3\left(b^{2}-1\right)
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12b, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4b.
8b=3b^{2}-3
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te b^{2}-1.
8b-3b^{2}=-3
Tangohia te 3b^{2} mai i ngā taha e rua.
8b-3b^{2}+3=0
Me tāpiri te 3 ki ngā taha e rua.
-3b^{2}+8b+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\times 3}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 8 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-8±\sqrt{64-4\left(-3\right)\times 3}}{2\left(-3\right)}
Pūrua 8.
b=\frac{-8±\sqrt{64+12\times 3}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
b=\frac{-8±\sqrt{64+36}}{2\left(-3\right)}
Whakareatia 12 ki te 3.
b=\frac{-8±\sqrt{100}}{2\left(-3\right)}
Tāpiri 64 ki te 36.
b=\frac{-8±10}{2\left(-3\right)}
Tuhia te pūtakerua o te 100.
b=\frac{-8±10}{-6}
Whakareatia 2 ki te -3.
b=\frac{2}{-6}
Nā, me whakaoti te whārite b=\frac{-8±10}{-6} ina he tāpiri te ±. Tāpiri -8 ki te 10.
b=-\frac{1}{3}
Whakahekea te hautanga \frac{2}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
b=-\frac{18}{-6}
Nā, me whakaoti te whārite b=\frac{-8±10}{-6} ina he tango te ±. Tango 10 mai i -8.
b=3
Whakawehe -18 ki te -6.
b=-\frac{1}{3} b=3
Kua oti te whārite te whakatau.
8b=3\left(b^{2}-1\right)
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12b, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4b.
8b=3b^{2}-3
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te b^{2}-1.
8b-3b^{2}=-3
Tangohia te 3b^{2} mai i ngā taha e rua.
-3b^{2}+8b=-3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3b^{2}+8b}{-3}=-\frac{3}{-3}
Whakawehea ngā taha e rua ki te -3.
b^{2}+\frac{8}{-3}b=-\frac{3}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
b^{2}-\frac{8}{3}b=-\frac{3}{-3}
Whakawehe 8 ki te -3.
b^{2}-\frac{8}{3}b=1
Whakawehe -3 ki te -3.
b^{2}-\frac{8}{3}b+\left(-\frac{4}{3}\right)^{2}=1+\left(-\frac{4}{3}\right)^{2}
Whakawehea te -\frac{8}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{3}. Nā, tāpiria te pūrua o te -\frac{4}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}-\frac{8}{3}b+\frac{16}{9}=1+\frac{16}{9}
Pūruatia -\frac{4}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
b^{2}-\frac{8}{3}b+\frac{16}{9}=\frac{25}{9}
Tāpiri 1 ki te \frac{16}{9}.
\left(b-\frac{4}{3}\right)^{2}=\frac{25}{9}
Tauwehea b^{2}-\frac{8}{3}b+\frac{16}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{4}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b-\frac{4}{3}=\frac{5}{3} b-\frac{4}{3}=-\frac{5}{3}
Whakarūnātia.
b=3 b=-\frac{1}{3}
Me tāpiri \frac{4}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}