Aromātai
\frac{8}{31}\approx 0.258064516
Tauwehe
\frac{2 ^ {3}}{31} = 0.25806451612903225
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2}{3}}{\frac{5}{\frac{1}{2}+1}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{2}{3}}{\frac{5}{\frac{1}{2}+\frac{2}{2}}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{\frac{2}{3}}{\frac{5}{\frac{1+2}{2}}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{2}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{2}{3}}{\frac{5}{\frac{3}{2}}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Tāpirihia te 1 ki te 2, ka 3.
\frac{\frac{2}{3}}{5\times \frac{2}{3}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Whakawehe 5 ki te \frac{3}{2} mā te whakarea 5 ki te tau huripoki o \frac{3}{2}.
\frac{\frac{2}{3}}{\frac{5\times 2}{3}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Tuhia te 5\times \frac{2}{3} hei hautanga kotahi.
\frac{\frac{2}{3}}{\frac{10}{3}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Whakareatia te 5 ki te 2, ka 10.
\frac{\frac{2}{3}}{\frac{10}{3}-3\left(\frac{2}{4}-\frac{1}{4}\right)}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{1}{2} me \frac{1}{4} ki te hautau me te tautūnga 4.
\frac{\frac{2}{3}}{\frac{10}{3}-3\times \frac{2-1}{4}}
Tā te mea he rite te tauraro o \frac{2}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{2}{3}}{\frac{10}{3}-3\times \frac{1}{4}}
Tangohia te 1 i te 2, ka 1.
\frac{\frac{2}{3}}{\frac{10}{3}-\frac{3}{4}}
Whakareatia te 3 ki te \frac{1}{4}, ka \frac{3}{4}.
\frac{\frac{2}{3}}{\frac{40}{12}-\frac{9}{12}}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{10}{3} me \frac{3}{4} ki te hautau me te tautūnga 12.
\frac{\frac{2}{3}}{\frac{40-9}{12}}
Tā te mea he rite te tauraro o \frac{40}{12} me \frac{9}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{2}{3}}{\frac{31}{12}}
Tangohia te 9 i te 40, ka 31.
\frac{2}{3}\times \frac{12}{31}
Whakawehe \frac{2}{3} ki te \frac{31}{12} mā te whakarea \frac{2}{3} ki te tau huripoki o \frac{31}{12}.
\frac{2\times 12}{3\times 31}
Me whakarea te \frac{2}{3} ki te \frac{12}{31} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{24}{93}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 12}{3\times 31}.
\frac{8}{31}
Whakahekea te hautanga \frac{24}{93} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}