Aromātai
\frac{31}{3}\approx 10.333333333
Tauwehe
\frac{31}{3} = 10\frac{1}{3} = 10.333333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}+\frac{18+1}{6}+\frac{4\times 9+2}{9}+\frac{2\times 18+5}{18}
Whakareatia te 3 ki te 6, ka 18.
\frac{2}{3}+\frac{19}{6}+\frac{4\times 9+2}{9}+\frac{2\times 18+5}{18}
Tāpirihia te 18 ki te 1, ka 19.
\frac{4}{6}+\frac{19}{6}+\frac{4\times 9+2}{9}+\frac{2\times 18+5}{18}
Ko te maha noa iti rawa atu o 3 me 6 ko 6. Me tahuri \frac{2}{3} me \frac{19}{6} ki te hautau me te tautūnga 6.
\frac{4+19}{6}+\frac{4\times 9+2}{9}+\frac{2\times 18+5}{18}
Tā te mea he rite te tauraro o \frac{4}{6} me \frac{19}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{23}{6}+\frac{4\times 9+2}{9}+\frac{2\times 18+5}{18}
Tāpirihia te 4 ki te 19, ka 23.
\frac{23}{6}+\frac{36+2}{9}+\frac{2\times 18+5}{18}
Whakareatia te 4 ki te 9, ka 36.
\frac{23}{6}+\frac{38}{9}+\frac{2\times 18+5}{18}
Tāpirihia te 36 ki te 2, ka 38.
\frac{69}{18}+\frac{76}{18}+\frac{2\times 18+5}{18}
Ko te maha noa iti rawa atu o 6 me 9 ko 18. Me tahuri \frac{23}{6} me \frac{38}{9} ki te hautau me te tautūnga 18.
\frac{69+76}{18}+\frac{2\times 18+5}{18}
Tā te mea he rite te tauraro o \frac{69}{18} me \frac{76}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{145}{18}+\frac{2\times 18+5}{18}
Tāpirihia te 69 ki te 76, ka 145.
\frac{145}{18}+\frac{36+5}{18}
Whakareatia te 2 ki te 18, ka 36.
\frac{145}{18}+\frac{41}{18}
Tāpirihia te 36 ki te 5, ka 41.
\frac{145+41}{18}
Tā te mea he rite te tauraro o \frac{145}{18} me \frac{41}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{186}{18}
Tāpirihia te 145 ki te 41, ka 186.
\frac{31}{3}
Whakahekea te hautanga \frac{186}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}