Aromātai
\frac{2}{9}\approx 0.222222222
Tauwehe
\frac{2}{3 ^ {2}} = 0.2222222222222222
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}+\frac{1\times 1}{4\times 3}\times \frac{2}{3}-\frac{1}{2}
Me whakarea te \frac{1}{4} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{3}+\frac{1}{12}\times \frac{2}{3}-\frac{1}{2}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{4\times 3}.
\frac{2}{3}+\frac{1\times 2}{12\times 3}-\frac{1}{2}
Me whakarea te \frac{1}{12} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{3}+\frac{2}{36}-\frac{1}{2}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 2}{12\times 3}.
\frac{2}{3}+\frac{1}{18}-\frac{1}{2}
Whakahekea te hautanga \frac{2}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{12}{18}+\frac{1}{18}-\frac{1}{2}
Ko te maha noa iti rawa atu o 3 me 18 ko 18. Me tahuri \frac{2}{3} me \frac{1}{18} ki te hautau me te tautūnga 18.
\frac{12+1}{18}-\frac{1}{2}
Tā te mea he rite te tauraro o \frac{12}{18} me \frac{1}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{18}-\frac{1}{2}
Tāpirihia te 12 ki te 1, ka 13.
\frac{13}{18}-\frac{9}{18}
Ko te maha noa iti rawa atu o 18 me 2 ko 18. Me tahuri \frac{13}{18} me \frac{1}{2} ki te hautau me te tautūnga 18.
\frac{13-9}{18}
Tā te mea he rite te tauraro o \frac{13}{18} me \frac{9}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{4}{18}
Tangohia te 9 i te 13, ka 4.
\frac{2}{9}
Whakahekea te hautanga \frac{4}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}