Aromātai
\text{Indeterminate}
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{\left(3+\sqrt{-5}\right)\times 3}
Tuhia te \frac{\frac{2}{3+\sqrt{-5}}}{3} hei hautanga kotahi.
\frac{2}{9+3\sqrt{-5}}
Whakamahia te āhuatanga tohatoha hei whakarea te 3+\sqrt{-5} ki te 3.
\frac{2\left(9-3\sqrt{-5}\right)}{\left(9+3\sqrt{-5}\right)\left(9-3\sqrt{-5}\right)}
Whakangāwaritia te tauraro o \frac{2}{9+3\sqrt{-5}} mā te whakarea i te taurunga me te tauraro ki te 9-3\sqrt{-5}.
\frac{2\left(9-3\sqrt{-5}\right)}{9^{2}-\left(3\sqrt{-5}\right)^{2}}
Whakaarohia te \left(9+3\sqrt{-5}\right)\left(9-3\sqrt{-5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(9-3\sqrt{-5}\right)}{81-\left(3\sqrt{-5}\right)^{2}}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
\frac{2\left(9-3\sqrt{-5}\right)}{81-3^{2}\left(\sqrt{-5}\right)^{2}}
Whakarohaina te \left(3\sqrt{-5}\right)^{2}.
\frac{2\left(9-3\sqrt{-5}\right)}{81-9\left(\sqrt{-5}\right)^{2}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{2\left(9-3\sqrt{-5}\right)}{81-9\left(-5\right)}
Tātaihia te \sqrt{-5} mā te pū o 2, kia riro ko -5.
\frac{2\left(9-3\sqrt{-5}\right)}{81-\left(-45\right)}
Whakareatia te 9 ki te -5, ka -45.
\frac{2\left(9-3\sqrt{-5}\right)}{81+45}
Whakareatia te -1 ki te -45, ka 45.
\frac{2\left(9-3\sqrt{-5}\right)}{126}
Tāpirihia te 81 ki te 45, ka 126.
\frac{1}{63}\left(9-3\sqrt{-5}\right)
Whakawehea te 2\left(9-3\sqrt{-5}\right) ki te 126, kia riro ko \frac{1}{63}\left(9-3\sqrt{-5}\right).
\frac{1}{63}\times 9+\frac{1}{63}\left(-3\right)\sqrt{-5}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{63} ki te 9-3\sqrt{-5}.
\frac{9}{63}+\frac{1}{63}\left(-3\right)\sqrt{-5}
Whakareatia te \frac{1}{63} ki te 9, ka \frac{9}{63}.
\frac{1}{7}+\frac{1}{63}\left(-3\right)\sqrt{-5}
Whakahekea te hautanga \frac{9}{63} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
\frac{1}{7}+\frac{-3}{63}\sqrt{-5}
Whakareatia te \frac{1}{63} ki te -3, ka \frac{-3}{63}.
\frac{1}{7}-\frac{1}{21}\sqrt{-5}
Whakahekea te hautanga \frac{-3}{63} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}