Aromātai
-\frac{47}{15}\approx -3.133333333
Tauwehe
-\frac{47}{15} = -3\frac{2}{15} = -3.1333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{15}-\frac{160+2}{40}+\frac{47}{60}
Whakareatia te 4 ki te 40, ka 160.
\frac{2}{15}-\frac{162}{40}+\frac{47}{60}
Tāpirihia te 160 ki te 2, ka 162.
\frac{2}{15}-\frac{81}{20}+\frac{47}{60}
Whakahekea te hautanga \frac{162}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{8}{60}-\frac{243}{60}+\frac{47}{60}
Ko te maha noa iti rawa atu o 15 me 20 ko 60. Me tahuri \frac{2}{15} me \frac{81}{20} ki te hautau me te tautūnga 60.
\frac{8-243}{60}+\frac{47}{60}
Tā te mea he rite te tauraro o \frac{8}{60} me \frac{243}{60}, me tango rāua mā te tango i ō raua taurunga.
\frac{-235}{60}+\frac{47}{60}
Tangohia te 243 i te 8, ka -235.
-\frac{47}{12}+\frac{47}{60}
Whakahekea te hautanga \frac{-235}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
-\frac{235}{60}+\frac{47}{60}
Ko te maha noa iti rawa atu o 12 me 60 ko 60. Me tahuri -\frac{47}{12} me \frac{47}{60} ki te hautau me te tautūnga 60.
\frac{-235+47}{60}
Tā te mea he rite te tauraro o -\frac{235}{60} me \frac{47}{60}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-188}{60}
Tāpirihia te -235 ki te 47, ka -188.
-\frac{47}{15}
Whakahekea te hautanga \frac{-188}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}