Aromātai
\frac{281}{225}\approx 1.248888889
Tauwehe
\frac{281}{3 ^ {2} \cdot 5 ^ {2}} = 1\frac{56}{225} = 1.248888888888889
Tohaina
Kua tāruatia ki te papatopenga
\frac{2+13}{15}+\frac{8}{15}\times \frac{7}{15}
Tā te mea he rite te tauraro o \frac{2}{15} me \frac{13}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{15}{15}+\frac{8}{15}\times \frac{7}{15}
Tāpirihia te 2 ki te 13, ka 15.
1+\frac{8}{15}\times \frac{7}{15}
Whakawehea te 15 ki te 15, kia riro ko 1.
1+\frac{8\times 7}{15\times 15}
Me whakarea te \frac{8}{15} ki te \frac{7}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
1+\frac{56}{225}
Mahia ngā whakarea i roto i te hautanga \frac{8\times 7}{15\times 15}.
\frac{225}{225}+\frac{56}{225}
Me tahuri te 1 ki te hautau \frac{225}{225}.
\frac{225+56}{225}
Tā te mea he rite te tauraro o \frac{225}{225} me \frac{56}{225}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{281}{225}
Tāpirihia te 225 ki te 56, ka 281.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}