Whakaoti mō h
h=12\sqrt{2}-12\approx 4.970562748
h=-12\sqrt{2}-12\approx -28.970562748
Tohaina
Kua tāruatia ki te papatopenga
2=\frac{\left(12+h\right)^{2}}{12^{2}}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
2=\frac{144+24h+h^{2}}{12^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(12+h\right)^{2}.
2=\frac{144+24h+h^{2}}{144}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
2=1+\frac{1}{6}h+\frac{1}{144}h^{2}
Whakawehea ia wā o 144+24h+h^{2} ki te 144, kia riro ko 1+\frac{1}{6}h+\frac{1}{144}h^{2}.
1+\frac{1}{6}h+\frac{1}{144}h^{2}=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1+\frac{1}{6}h+\frac{1}{144}h^{2}-2=0
Tangohia te 2 mai i ngā taha e rua.
-1+\frac{1}{6}h+\frac{1}{144}h^{2}=0
Tangohia te 2 i te 1, ka -1.
\frac{1}{144}h^{2}+\frac{1}{6}h-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
h=\frac{-\frac{1}{6}±\sqrt{\left(\frac{1}{6}\right)^{2}-4\times \frac{1}{144}\left(-1\right)}}{2\times \frac{1}{144}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{144} mō a, \frac{1}{6} mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\frac{1}{6}±\sqrt{\frac{1}{36}-4\times \frac{1}{144}\left(-1\right)}}{2\times \frac{1}{144}}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
h=\frac{-\frac{1}{6}±\sqrt{\frac{1}{36}-\frac{1}{36}\left(-1\right)}}{2\times \frac{1}{144}}
Whakareatia -4 ki te \frac{1}{144}.
h=\frac{-\frac{1}{6}±\sqrt{\frac{1+1}{36}}}{2\times \frac{1}{144}}
Whakareatia -\frac{1}{36} ki te -1.
h=\frac{-\frac{1}{6}±\sqrt{\frac{1}{18}}}{2\times \frac{1}{144}}
Tāpiri \frac{1}{36} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
h=\frac{-\frac{1}{6}±\frac{\sqrt{2}}{6}}{2\times \frac{1}{144}}
Tuhia te pūtakerua o te \frac{1}{18}.
h=\frac{-\frac{1}{6}±\frac{\sqrt{2}}{6}}{\frac{1}{72}}
Whakareatia 2 ki te \frac{1}{144}.
h=\frac{\sqrt{2}-1}{\frac{1}{72}\times 6}
Nā, me whakaoti te whārite h=\frac{-\frac{1}{6}±\frac{\sqrt{2}}{6}}{\frac{1}{72}} ina he tāpiri te ±. Tāpiri -\frac{1}{6} ki te \frac{\sqrt{2}}{6}.
h=12\sqrt{2}-12
Whakawehe \frac{-1+\sqrt{2}}{6} ki te \frac{1}{72} mā te whakarea \frac{-1+\sqrt{2}}{6} ki te tau huripoki o \frac{1}{72}.
h=\frac{-\sqrt{2}-1}{\frac{1}{72}\times 6}
Nā, me whakaoti te whārite h=\frac{-\frac{1}{6}±\frac{\sqrt{2}}{6}}{\frac{1}{72}} ina he tango te ±. Tango \frac{\sqrt{2}}{6} mai i -\frac{1}{6}.
h=-12\sqrt{2}-12
Whakawehe \frac{-1-\sqrt{2}}{6} ki te \frac{1}{72} mā te whakarea \frac{-1-\sqrt{2}}{6} ki te tau huripoki o \frac{1}{72}.
h=12\sqrt{2}-12 h=-12\sqrt{2}-12
Kua oti te whārite te whakatau.
2=\frac{\left(12+h\right)^{2}}{12^{2}}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
2=\frac{144+24h+h^{2}}{12^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(12+h\right)^{2}.
2=\frac{144+24h+h^{2}}{144}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
2=1+\frac{1}{6}h+\frac{1}{144}h^{2}
Whakawehea ia wā o 144+24h+h^{2} ki te 144, kia riro ko 1+\frac{1}{6}h+\frac{1}{144}h^{2}.
1+\frac{1}{6}h+\frac{1}{144}h^{2}=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{6}h+\frac{1}{144}h^{2}=2-1
Tangohia te 1 mai i ngā taha e rua.
\frac{1}{6}h+\frac{1}{144}h^{2}=1
Tangohia te 1 i te 2, ka 1.
\frac{1}{144}h^{2}+\frac{1}{6}h=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{\frac{1}{144}h^{2}+\frac{1}{6}h}{\frac{1}{144}}=\frac{1}{\frac{1}{144}}
Me whakarea ngā taha e rua ki te 144.
h^{2}+\frac{\frac{1}{6}}{\frac{1}{144}}h=\frac{1}{\frac{1}{144}}
Mā te whakawehe ki te \frac{1}{144} ka wetekia te whakareanga ki te \frac{1}{144}.
h^{2}+24h=\frac{1}{\frac{1}{144}}
Whakawehe \frac{1}{6} ki te \frac{1}{144} mā te whakarea \frac{1}{6} ki te tau huripoki o \frac{1}{144}.
h^{2}+24h=144
Whakawehe 1 ki te \frac{1}{144} mā te whakarea 1 ki te tau huripoki o \frac{1}{144}.
h^{2}+24h+12^{2}=144+12^{2}
Whakawehea te 24, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 12. Nā, tāpiria te pūrua o te 12 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
h^{2}+24h+144=144+144
Pūrua 12.
h^{2}+24h+144=288
Tāpiri 144 ki te 144.
\left(h+12\right)^{2}=288
Tauwehea h^{2}+24h+144. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+12\right)^{2}}=\sqrt{288}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
h+12=12\sqrt{2} h+12=-12\sqrt{2}
Whakarūnātia.
h=12\sqrt{2}-12 h=-12\sqrt{2}-12
Me tango 12 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}