Aromātai
2^{\frac{5}{2}}-2\sqrt{7}\approx 0.365351627
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{2\sqrt{2}+\sqrt{7}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{\left(2\sqrt{2}+\sqrt{7}\right)\left(2\sqrt{2}-\sqrt{7}\right)}
Whakangāwaritia te tauraro o \frac{2}{2\sqrt{2}+\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{2}-\sqrt{7}.
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Whakaarohia te \left(2\sqrt{2}+\sqrt{7}\right)\left(2\sqrt{2}-\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Whakarohaina te \left(2\sqrt{2}\right)^{2}.
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{4\times 2-\left(\sqrt{7}\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{8-\left(\sqrt{7}\right)^{2}}
Whakareatia te 4 ki te 2, ka 8.
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{8-7}
Ko te pūrua o \sqrt{7} ko 7.
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{1}
Tangohia te 7 i te 8, ka 1.
2\left(2\sqrt{2}-\sqrt{7}\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
4\sqrt{2}-2\sqrt{7}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2\sqrt{2}-\sqrt{7}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}