Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(\sqrt{7}-3\right)}{\left(\sqrt{7}+3\right)\left(\sqrt{7}-3\right)}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{7}+3} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}-3.
\frac{2\left(\sqrt{7}-3\right)}{\left(\sqrt{7}\right)^{2}-3^{2}}
Whakaarohia te \left(\sqrt{7}+3\right)\left(\sqrt{7}-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{7}-3\right)}{7-9}
Pūrua \sqrt{7}. Pūrua 3.
\frac{2\left(\sqrt{7}-3\right)}{-2}
Tangohia te 9 i te 7, ka -2.
-\left(\sqrt{7}-3\right)
Me whakakore te -2 me te -2.
-\sqrt{7}-\left(-3\right)
Hei kimi i te tauaro o \sqrt{7}-3, kimihia te tauaro o ia taurangi.
-\sqrt{7}+3
Ko te tauaro o -3 ko 3.