Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+\sqrt{20}+\frac{8}{\sqrt{80}}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{2\sqrt{5}}{5}+\sqrt{20}+\frac{8}{\sqrt{80}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{2\sqrt{5}}{5}+2\sqrt{5}+\frac{8}{\sqrt{80}}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
\frac{12}{5}\sqrt{5}+\frac{8}{\sqrt{80}}
Pahekotia te \frac{2\sqrt{5}}{5} me 2\sqrt{5}, ka \frac{12}{5}\sqrt{5}.
\frac{12}{5}\sqrt{5}+\frac{8}{4\sqrt{5}}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
\frac{12}{5}\sqrt{5}+\frac{8\sqrt{5}}{4\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{8}{4\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{12}{5}\sqrt{5}+\frac{8\sqrt{5}}{4\times 5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{12}{5}\sqrt{5}+\frac{2\sqrt{5}}{5}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{14}{5}\sqrt{5}
Pahekotia te \frac{12}{5}\sqrt{5} me \frac{2\sqrt{5}}{5}, ka \frac{14}{5}\sqrt{5}.