Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{12}{\sqrt{27}}+2\sqrt{7}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{2\sqrt{3}}{3}+\frac{12}{\sqrt{27}}+2\sqrt{7}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{3}}{3}+\frac{12}{3\sqrt{3}}+2\sqrt{7}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{2\sqrt{3}}{3}+\frac{12\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}+2\sqrt{7}
Whakangāwaritia te tauraro o \frac{12}{3\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{2\sqrt{3}}{3}+\frac{12\sqrt{3}}{3\times 3}+2\sqrt{7}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{3}}{3}+\frac{4\sqrt{3}}{3}+2\sqrt{7}
Me whakakore tahi te 3 i te taurunga me te tauraro.
2\sqrt{3}+2\sqrt{7}
Pahekotia te \frac{2\sqrt{3}}{3} me \frac{4\sqrt{3}}{3}, ka 2\sqrt{3}.