Aromātai
2\left(\sqrt{3}+\sqrt{7}\right)\approx 8.755604237
Tauwehe
2 {(\sqrt{3} + \sqrt{7})} = 8.755604237
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{12}{\sqrt{27}}+2\sqrt{7}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{2\sqrt{3}}{3}+\frac{12}{\sqrt{27}}+2\sqrt{7}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{3}}{3}+\frac{12}{3\sqrt{3}}+2\sqrt{7}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{2\sqrt{3}}{3}+\frac{12\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}+2\sqrt{7}
Whakangāwaritia te tauraro o \frac{12}{3\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{2\sqrt{3}}{3}+\frac{12\sqrt{3}}{3\times 3}+2\sqrt{7}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{3}}{3}+\frac{4\sqrt{3}}{3}+2\sqrt{7}
Me whakakore tahi te 3 i te taurunga me te tauraro.
2\sqrt{3}+2\sqrt{7}
Pahekotia te \frac{2\sqrt{3}}{3} me \frac{4\sqrt{3}}{3}, ka 2\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}