Aromātai
1-\sqrt{2}\approx -0.414213562
Tauwehe
1-\sqrt{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\left(\sqrt{2}+2\right)}{\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{2}-2} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}+2.
\frac{2\left(\sqrt{2}+2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Whakaarohia te \left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{2}+2\right)}{2-4}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Pūrua \sqrt{2}. Pūrua 2.
\frac{2\left(\sqrt{2}+2\right)}{-2}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Tangohia te 4 i te 2, ka -2.
-\left(\sqrt{2}+2\right)+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Me whakakore te -2 me te -2.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\frac{\sqrt{32}}{2}
Whakangāwaritia te tauraro o \frac{\sqrt{2}+1}{\sqrt{2}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}+1.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}-\frac{\sqrt{32}}{2}
Whakaarohia te \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{2-1}-\frac{\sqrt{32}}{2}
Pūrua \sqrt{2}. Pūrua 1.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{1}-\frac{\sqrt{32}}{2}
Tangohia te 1 i te 2, ka 1.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)-\frac{\sqrt{32}}{2}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-\frac{\sqrt{32}}{2}
Whakareatia te \sqrt{2}+1 ki te \sqrt{2}+1, ka \left(\sqrt{2}+1\right)^{2}.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-\frac{4\sqrt{2}}{2}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-2\sqrt{2}
Whakawehea te 4\sqrt{2} ki te 2, kia riro ko 2\sqrt{2}.
-\sqrt{2}-2+\left(\sqrt{2}+1\right)^{2}-2\sqrt{2}
Hei kimi i te tauaro o \sqrt{2}+2, kimihia te tauaro o ia taurangi.
-\sqrt{2}-2+\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1-2\sqrt{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{2}+1\right)^{2}.
-\sqrt{2}-2+2+2\sqrt{2}+1-2\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
-\sqrt{2}-2+3+2\sqrt{2}-2\sqrt{2}
Tāpirihia te 2 ki te 1, ka 3.
-\sqrt{2}+1+2\sqrt{2}-2\sqrt{2}
Tāpirihia te -2 ki te 3, ka 1.
\sqrt{2}+1-2\sqrt{2}
Pahekotia te -\sqrt{2} me 2\sqrt{2}, ka \sqrt{2}.
-\sqrt{2}+1
Pahekotia te \sqrt{2} me -2\sqrt{2}, ka -\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}