Whakaoti mō b
b=\sqrt{3}+1\approx 2.732050808
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\times 2}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Whakawehe 2 ki te \frac{\sqrt{2}}{2} mā te whakarea 2 ki te tau huripoki o \frac{\sqrt{2}}{2}.
\frac{4}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Whakareatia te 2 ki te 2, ka 4.
\frac{4\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{4\sqrt{2}}{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Ko te pūrua o \sqrt{2} ko 2.
2\sqrt{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Whakawehea te 4\sqrt{2} ki te 2, kia riro ko 2\sqrt{2}.
2\sqrt{2}=\frac{b\times 4}{\sqrt{2}+\sqrt{6}}
Whakawehe b ki te \frac{\sqrt{2}+\sqrt{6}}{4} mā te whakarea b ki te tau huripoki o \frac{\sqrt{2}+\sqrt{6}}{4}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Whakangāwaritia te tauraro o \frac{b\times 4}{\sqrt{2}+\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}-\sqrt{6}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Whakaarohia te \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
Pūrua \sqrt{2}. Pūrua \sqrt{6}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Tangohia te 6 i te 2, ka -4.
2\sqrt{2}=b\left(-1\right)\left(\sqrt{2}-\sqrt{6}\right)
Me whakakore te -4 me te -4.
2\sqrt{2}=-b\sqrt{2}+b\sqrt{6}
Whakamahia te āhuatanga tohatoha hei whakarea te b\left(-1\right) ki te \sqrt{2}-\sqrt{6}.
-b\sqrt{2}+b\sqrt{6}=2\sqrt{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-\sqrt{2}+\sqrt{6}\right)b=2\sqrt{2}
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(\sqrt{6}-\sqrt{2}\right)b=2\sqrt{2}
He hanga arowhānui tō te whārite.
\frac{\left(\sqrt{6}-\sqrt{2}\right)b}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Whakawehea ngā taha e rua ki te -\sqrt{2}+\sqrt{6}.
b=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Mā te whakawehe ki te -\sqrt{2}+\sqrt{6} ka wetekia te whakareanga ki te -\sqrt{2}+\sqrt{6}.
b=\sqrt{3}+1
Whakawehe 2\sqrt{2} ki te -\sqrt{2}+\sqrt{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}