Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\times 2}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Whakawehe 2 ki te \frac{\sqrt{2}}{2} mā te whakarea 2 ki te tau huripoki o \frac{\sqrt{2}}{2}.
\frac{4}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Whakareatia te 2 ki te 2, ka 4.
\frac{4\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{4\sqrt{2}}{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Ko te pūrua o \sqrt{2} ko 2.
2\sqrt{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Whakawehea te 4\sqrt{2} ki te 2, kia riro ko 2\sqrt{2}.
2\sqrt{2}=\frac{b\times 4}{\sqrt{2}+\sqrt{6}}
Whakawehe b ki te \frac{\sqrt{2}+\sqrt{6}}{4} mā te whakarea b ki te tau huripoki o \frac{\sqrt{2}+\sqrt{6}}{4}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Whakangāwaritia te tauraro o \frac{b\times 4}{\sqrt{2}+\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}-\sqrt{6}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Whakaarohia te \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
Pūrua \sqrt{2}. Pūrua \sqrt{6}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Tangohia te 6 i te 2, ka -4.
2\sqrt{2}=b\left(-1\right)\left(\sqrt{2}-\sqrt{6}\right)
Me whakakore te -4 me te -4.
2\sqrt{2}=-b\sqrt{2}+b\sqrt{6}
Whakamahia te āhuatanga tohatoha hei whakarea te b\left(-1\right) ki te \sqrt{2}-\sqrt{6}.
-b\sqrt{2}+b\sqrt{6}=2\sqrt{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-\sqrt{2}+\sqrt{6}\right)b=2\sqrt{2}
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(\sqrt{6}-\sqrt{2}\right)b=2\sqrt{2}
He hanga arowhānui tō te whārite.
\frac{\left(\sqrt{6}-\sqrt{2}\right)b}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Whakawehea ngā taha e rua ki te -\sqrt{2}+\sqrt{6}.
b=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Mā te whakawehe ki te -\sqrt{2}+\sqrt{6} ka wetekia te whakareanga ki te -\sqrt{2}+\sqrt{6}.
b=\sqrt{3}+1
Whakawehe 2\sqrt{2} ki te -\sqrt{2}+\sqrt{6}.