Aromātai
\frac{208}{133}\approx 1.563909774
Tauwehe
\frac{2 ^ {4} \cdot 13}{7 \cdot 19} = 1\frac{75}{133} = 1.5639097744360901
Tohaina
Kua tāruatia ki te papatopenga
\frac{8}{4^{2}+3}-\frac{-2\times 4}{\left(-2\right)^{2}+3}
Whakareatia te 2 ki te 4, ka 8.
\frac{8}{16+3}-\frac{-2\times 4}{\left(-2\right)^{2}+3}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{8}{19}-\frac{-2\times 4}{\left(-2\right)^{2}+3}
Tāpirihia te 16 ki te 3, ka 19.
\frac{8}{19}-\frac{-8}{\left(-2\right)^{2}+3}
Whakareatia te -2 ki te 4, ka -8.
\frac{8}{19}-\frac{-8}{4+3}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{8}{19}-\frac{-8}{7}
Tāpirihia te 4 ki te 3, ka 7.
\frac{8}{19}-\left(-\frac{8}{7}\right)
Ka taea te hautanga \frac{-8}{7} te tuhi anō ko -\frac{8}{7} mā te tango i te tohu tōraro.
\frac{8}{19}+\frac{8}{7}
Ko te tauaro o -\frac{8}{7} ko \frac{8}{7}.
\frac{56}{133}+\frac{152}{133}
Ko te maha noa iti rawa atu o 19 me 7 ko 133. Me tahuri \frac{8}{19} me \frac{8}{7} ki te hautau me te tautūnga 133.
\frac{56+152}{133}
Tā te mea he rite te tauraro o \frac{56}{133} me \frac{152}{133}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{208}{133}
Tāpirihia te 56 ki te 152, ka 208.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}