Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2}{3}\sqrt{x}+\frac{1}{3}=x
Whakawehea ia wā o 2\sqrt{x}+1 ki te 3, kia riro ko \frac{2}{3}\sqrt{x}+\frac{1}{3}.
\frac{2}{3}\sqrt{x}+\frac{1}{3}-x=0
Tangohia te x mai i ngā taha e rua.
\frac{2}{3}\sqrt{x}-x=-\frac{1}{3}
Tangohia te \frac{1}{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{2}{3}\sqrt{x}=-\frac{1}{3}+x
Me tango -x mai i ngā taha e rua o te whārite.
\left(\frac{2}{3}\sqrt{x}\right)^{2}=\left(-\frac{1}{3}+x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\frac{2}{3}\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-\frac{1}{3}+x\right)^{2}
Whakarohaina te \left(\frac{2}{3}\sqrt{x}\right)^{2}.
\frac{4}{9}\left(\sqrt{x}\right)^{2}=\left(-\frac{1}{3}+x\right)^{2}
Tātaihia te \frac{2}{3} mā te pū o 2, kia riro ko \frac{4}{9}.
\frac{4}{9}x=\left(-\frac{1}{3}+x\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
\frac{4}{9}x=\frac{1}{9}-\frac{2}{3}x+x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-\frac{1}{3}+x\right)^{2}.
\frac{4}{9}x+\frac{2}{3}x=\frac{1}{9}+x^{2}
Me tāpiri te \frac{2}{3}x ki ngā taha e rua.
\frac{10}{9}x=\frac{1}{9}+x^{2}
Pahekotia te \frac{4}{9}x me \frac{2}{3}x, ka \frac{10}{9}x.
\frac{10}{9}x-x^{2}=\frac{1}{9}
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+\frac{10}{9}x=\frac{1}{9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-x^{2}+\frac{10}{9}x-\frac{1}{9}=\frac{1}{9}-\frac{1}{9}
Me tango \frac{1}{9} mai i ngā taha e rua o te whārite.
-x^{2}+\frac{10}{9}x-\frac{1}{9}=0
Mā te tango i te \frac{1}{9} i a ia ake anō ka toe ko te 0.
x=\frac{-\frac{10}{9}±\sqrt{\left(\frac{10}{9}\right)^{2}-4\left(-1\right)\left(-\frac{1}{9}\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, \frac{10}{9} mō b, me -\frac{1}{9} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{10}{9}±\sqrt{\frac{100}{81}-4\left(-1\right)\left(-\frac{1}{9}\right)}}{2\left(-1\right)}
Pūruatia \frac{10}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{10}{9}±\sqrt{\frac{100}{81}+4\left(-\frac{1}{9}\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\frac{10}{9}±\sqrt{\frac{100}{81}-\frac{4}{9}}}{2\left(-1\right)}
Whakareatia 4 ki te -\frac{1}{9}.
x=\frac{-\frac{10}{9}±\sqrt{\frac{64}{81}}}{2\left(-1\right)}
Tāpiri \frac{100}{81} ki te -\frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{10}{9}±\frac{8}{9}}{2\left(-1\right)}
Tuhia te pūtakerua o te \frac{64}{81}.
x=\frac{-\frac{10}{9}±\frac{8}{9}}{-2}
Whakareatia 2 ki te -1.
x=-\frac{\frac{2}{9}}{-2}
Nā, me whakaoti te whārite x=\frac{-\frac{10}{9}±\frac{8}{9}}{-2} ina he tāpiri te ±. Tāpiri -\frac{10}{9} ki te \frac{8}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{9}
Whakawehe -\frac{2}{9} ki te -2.
x=-\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{-\frac{10}{9}±\frac{8}{9}}{-2} ina he tango te ±. Tango \frac{8}{9} mai i -\frac{10}{9} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1
Whakawehe -2 ki te -2.
x=\frac{1}{9} x=1
Kua oti te whārite te whakatau.
\frac{2\sqrt{\frac{1}{9}}+1}{3}=\frac{1}{9}
Whakakapia te \frac{1}{9} mō te x i te whārite \frac{2\sqrt{x}+1}{3}=x.
\frac{5}{9}=\frac{1}{9}
Whakarūnātia. Ko te uara x=\frac{1}{9} kāore e ngata ana ki te whārite.
\frac{2\sqrt{1}+1}{3}=1
Whakakapia te 1 mō te x i te whārite \frac{2\sqrt{x}+1}{3}=x.
1=1
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
x=1
Ko te whārite \frac{2\sqrt{x}}{3}=x-\frac{1}{3} he rongoā ahurei.