Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{2\sqrt{18}-\sqrt{27}}{\sqrt{3}}
Whakangāwaritia te tauraro o \frac{2\sqrt{5}+4\sqrt{3}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{2\sqrt{18}-\sqrt{27}}{\sqrt{3}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{2\times 3\sqrt{2}-\sqrt{27}}{\sqrt{3}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{6\sqrt{2}-\sqrt{27}}{\sqrt{3}}
Whakareatia te 2 ki te 3, ka 6.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{6\sqrt{2}-3\sqrt{3}}{\sqrt{3}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{6\sqrt{2}-3\sqrt{3}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{6}-\frac{2\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2} ki te \frac{3}{3}. Whakareatia \frac{\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{3} ki te \frac{2}{2}.
\frac{3\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}-2\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{6}
Tā te mea he rite te tauraro o \frac{3\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{6} me \frac{2\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{6\sqrt{10}+12\sqrt{6}-12\sqrt{6}+18}{6}
Mahia ngā whakarea i roto o 3\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}-2\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}.
\frac{6\sqrt{10}+18}{6}
Mahia ngā tātaitai i roto o 6\sqrt{10}+12\sqrt{6}-12\sqrt{6}+18.
\sqrt{10}+3
Whakawehea ia wā o 6\sqrt{10}+18 ki te 6, kia riro ko \sqrt{10}+3.