Aromātai
\frac{7-2\sqrt{6}}{5}\approx 0.420204103
Tauwehe
\frac{7 - 2 \sqrt{6}}{5} = 0.4202041028867288
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{2\sqrt{3}-\sqrt{2}}{2\sqrt{3}+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{3}-\sqrt{2}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakareatia te 2\sqrt{3}-\sqrt{2} ki te 2\sqrt{3}-\sqrt{2}, ka \left(2\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{12-4\sqrt{6}+2}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{14-4\sqrt{6}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Tāpirihia te 12 ki te 2, ka 14.
\frac{14-4\sqrt{6}}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{14-4\sqrt{6}}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{14-4\sqrt{6}}{4\times 3-\left(\sqrt{2}\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{14-4\sqrt{6}}{12-\left(\sqrt{2}\right)^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{14-4\sqrt{6}}{12-2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{14-4\sqrt{6}}{10}
Tangohia te 2 i te 12, ka 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}