Aromātai
\frac{14\sqrt{3}-6\sqrt{2}}{43}\approx 0.366591394
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)}
Whakangāwaritia te tauraro o \frac{2\sqrt{3}}{7+\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te 7-\sqrt{6}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}
Whakaarohia te \left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{49-6}
Pūrua 7. Pūrua \sqrt{6}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{43}
Tangohia te 6 i te 49, ka 43.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{6}}{43}
Whakamahia te āhuatanga tohatoha hei whakarea te 2\sqrt{3} ki te 7-\sqrt{6}.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{3}\sqrt{2}}{43}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{14\sqrt{3}-2\times 3\sqrt{2}}{43}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{14\sqrt{3}-6\sqrt{2}}{43}
Whakareatia te -2 ki te 3, ka -6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}