Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\times 3\sqrt{2}-\sqrt{32}}{\sqrt{8}+\sqrt{2}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{6\sqrt{2}-\sqrt{32}}{\sqrt{8}+\sqrt{2}}
Whakareatia te 2 ki te 3, ka 6.
\frac{6\sqrt{2}-4\sqrt{2}}{\sqrt{8}+\sqrt{2}}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
\frac{2\sqrt{2}}{\sqrt{8}+\sqrt{2}}
Pahekotia te 6\sqrt{2} me -4\sqrt{2}, ka 2\sqrt{2}.
\frac{2\sqrt{2}}{2\sqrt{2}+\sqrt{2}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{2}}{3\sqrt{2}}
Pahekotia te 2\sqrt{2} me \sqrt{2}, ka 3\sqrt{2}.
\frac{2}{3}
Me whakakore tahi te \sqrt{2} i te taurunga me te tauraro.