Aromātai
\frac{77239528302883885114193813893699}{19309882075720972902738525852800}\approx 4
Tohaina
Kua tāruatia ki te papatopenga
\frac{2 \cdot 0.9205048534524403}{0.9205048534524404} + \frac{0.8390996311772799}{0.83909963117728} + \cos(0)
Evaluate trigonometric functions in the problem
\frac{1.8410097069048806}{0.9205048534524404}+\frac{0.8390996311772799}{0.83909963117728}+\cos(0)
Whakareatia te 2 ki te 0.9205048534524403, ka 1.8410097069048806.
\frac{18410097069048806}{9205048534524404}+\frac{0.8390996311772799}{0.83909963117728}+\cos(0)
Whakarohaina te \frac{1.8410097069048806}{0.9205048534524404} mā te whakarea i te taurunga me te tauraro ki te 10000000000000000.
\frac{9205048534524403}{4602524267262202}+\frac{0.8390996311772799}{0.83909963117728}+\cos(0)
Whakahekea te hautanga \frac{18410097069048806}{9205048534524404} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{9205048534524403}{4602524267262202}+\frac{8390996311772799}{8390996311772800}+\cos(0)
Whakarohaina te \frac{0.8390996311772799}{0.83909963117728} mā te whakarea i te taurunga me te tauraro ki te 10000000000000000.
\frac{57929646227162912211455288040899}{19309882075720972902738525852800}+\cos(0)
Tāpirihia te \frac{9205048534524403}{4602524267262202} ki te \frac{8390996311772799}{8390996311772800}, ka \frac{57929646227162912211455288040899}{19309882075720972902738525852800}.
\frac{57929646227162912211455288040899}{19309882075720972902738525852800}+1
Tīkina te uara \cos(0) mai i te ripanga uara pākoki.
\frac{77239528302883885114193813893699}{19309882075720972902738525852800}
Tāpirihia te \frac{57929646227162912211455288040899}{19309882075720972902738525852800} ki te 1, ka \frac{77239528302883885114193813893699}{19309882075720972902738525852800}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}