Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\times 10+7}{10\times 8.37}=\frac{\frac{1}{4}}{0.8}
Tuhia te \frac{\frac{2\times 10+7}{10}}{8.37} hei hautanga kotahi.
\frac{20+7}{10\times 8.37}=\frac{\frac{1}{4}}{0.8}
Whakareatia te 2 ki te 10, ka 20.
\frac{27}{10\times 8.37}=\frac{\frac{1}{4}}{0.8}
Tāpirihia te 20 ki te 7, ka 27.
\frac{27}{83.7}=\frac{\frac{1}{4}}{0.8}
Whakareatia te 10 ki te 8.37, ka 83.7.
\frac{270}{837}=\frac{\frac{1}{4}}{0.8}
Whakarohaina te \frac{27}{83.7} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{10}{31}=\frac{\frac{1}{4}}{0.8}
Whakahekea te hautanga \frac{270}{837} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 27.
\frac{10}{31}=\frac{1}{4\times 0.8}
Tuhia te \frac{\frac{1}{4}}{0.8} hei hautanga kotahi.
\frac{10}{31}=\frac{1}{3.2}
Whakareatia te 4 ki te 0.8, ka 3.2.
\frac{10}{31}=\frac{10}{32}
Whakarohaina te \frac{1}{3.2} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{10}{31}=\frac{5}{16}
Whakahekea te hautanga \frac{10}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{160}{496}=\frac{155}{496}
Ko te maha noa iti rawa atu o 31 me 16 ko 496. Me tahuri \frac{10}{31} me \frac{5}{16} ki te hautau me te tautūnga 496.
\text{false}
Whakatauritea te \frac{160}{496} me te \frac{155}{496}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}