Whakaoti mō s
s = \frac{51}{16} = 3\frac{3}{16} = 3.1875
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2\times 2+1\right)\times 3}{2\left(3\times 3+1\right)}=\frac{s}{\frac{4\times 4+1}{4}}
Whakawehe \frac{2\times 2+1}{2} ki te \frac{3\times 3+1}{3} mā te whakarea \frac{2\times 2+1}{2} ki te tau huripoki o \frac{3\times 3+1}{3}.
\frac{\left(4+1\right)\times 3}{2\left(3\times 3+1\right)}=\frac{s}{\frac{4\times 4+1}{4}}
Whakareatia te 2 ki te 2, ka 4.
\frac{5\times 3}{2\left(3\times 3+1\right)}=\frac{s}{\frac{4\times 4+1}{4}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{15}{2\left(3\times 3+1\right)}=\frac{s}{\frac{4\times 4+1}{4}}
Whakareatia te 5 ki te 3, ka 15.
\frac{15}{2\left(9+1\right)}=\frac{s}{\frac{4\times 4+1}{4}}
Whakareatia te 3 ki te 3, ka 9.
\frac{15}{2\times 10}=\frac{s}{\frac{4\times 4+1}{4}}
Tāpirihia te 9 ki te 1, ka 10.
\frac{15}{20}=\frac{s}{\frac{4\times 4+1}{4}}
Whakareatia te 2 ki te 10, ka 20.
\frac{3}{4}=\frac{s}{\frac{4\times 4+1}{4}}
Whakahekea te hautanga \frac{15}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{3}{4}=\frac{s\times 4}{4\times 4+1}
Whakawehe s ki te \frac{4\times 4+1}{4} mā te whakarea s ki te tau huripoki o \frac{4\times 4+1}{4}.
\frac{3}{4}=\frac{s\times 4}{16+1}
Whakareatia te 4 ki te 4, ka 16.
\frac{3}{4}=\frac{s\times 4}{17}
Tāpirihia te 16 ki te 1, ka 17.
\frac{s\times 4}{17}=\frac{3}{4}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
s\times 4=\frac{3}{4}\times 17
Me whakarea ngā taha e rua ki te 17.
s\times 4=\frac{3\times 17}{4}
Tuhia te \frac{3}{4}\times 17 hei hautanga kotahi.
s\times 4=\frac{51}{4}
Whakareatia te 3 ki te 17, ka 51.
s=\frac{\frac{51}{4}}{4}
Whakawehea ngā taha e rua ki te 4.
s=\frac{51}{4\times 4}
Tuhia te \frac{\frac{51}{4}}{4} hei hautanga kotahi.
s=\frac{51}{16}
Whakareatia te 4 ki te 4, ka 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}