Whakaoti mō x
x=0
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 2 \cdot 10 } { 2 } x = ( 06 - x ) 10 \cdot 3
Tohaina
Kua tāruatia ki te papatopenga
2\times 10x=2\left(0\times 6-x\right)\times 10\times 3
Whakareatia ngā taha e rua o te whārite ki te 2.
20x=2\left(0\times 6-x\right)\times 10\times 3
Whakareatia te 2 ki te 10, ka 20.
20x=2\left(0-x\right)\times 10\times 3
Whakareatia te 0 ki te 6, ka 0.
20x=2\left(-1\right)x\times 10\times 3
Ko te tau i tāpiria he kore ka hua koia tonu.
20x=-2x\times 10\times 3
Whakareatia te 2 ki te -1, ka -2.
20x=-20x\times 3
Whakareatia te -2 ki te 10, ka -20.
20x=-60x
Whakareatia te -20 ki te 3, ka -60.
20x+60x=0
Me tāpiri te 60x ki ngā taha e rua.
80x=0
Pahekotia te 20x me 60x, ka 80x.
x=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te 80 e ōrite ki 0, me ōrite pū te x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}