Whakaoti mō x
x=-\frac{39}{44}\approx -0.886363636
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(2\left(x-1\right)\left(2+x\right)-3\right)-6\left(x+2\right)^{2}=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3\left(\left(2x-2\right)\left(2+x\right)-3\right)-6\left(x+2\right)^{2}=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
3\left(2x+2x^{2}-4-3\right)-6\left(x+2\right)^{2}=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-2 ki te 2+x ka whakakotahi i ngā kupu rite.
3\left(2x+2x^{2}-7\right)-6\left(x+2\right)^{2}=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Tangohia te 3 i te -4, ka -7.
6x+6x^{2}-21-6\left(x+2\right)^{2}=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x+2x^{2}-7.
6x+6x^{2}-21-6\left(x^{2}+4x+4\right)=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
6x+6x^{2}-21-6x^{2}-24x-24=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te x^{2}+4x+4.
6x-21-24x-24=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Pahekotia te 6x^{2} me -6x^{2}, ka 0.
-18x-21-24=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Pahekotia te 6x me -24x, ka -18x.
-18x-45=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Tangohia te 24 i te -21, ka -45.
-18x-45=6x\left(3-\left(-1\right)\right)-2\left(3-x\right)
Tātaitia te \sqrt[5]{-1} kia tae ki -1.
-18x-45=6x\left(3+1\right)-2\left(3-x\right)
Ko te tauaro o -1 ko 1.
-18x-45=6x\times 4-2\left(3-x\right)
Tāpirihia te 3 ki te 1, ka 4.
-18x-45=24x-2\left(3-x\right)
Whakareatia te 6 ki te 4, ka 24.
-18x-45=24x-6+2x
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 3-x.
-18x-45=26x-6
Pahekotia te 24x me 2x, ka 26x.
-18x-45-26x=-6
Tangohia te 26x mai i ngā taha e rua.
-44x-45=-6
Pahekotia te -18x me -26x, ka -44x.
-44x=-6+45
Me tāpiri te 45 ki ngā taha e rua.
-44x=39
Tāpirihia te -6 ki te 45, ka 39.
x=\frac{39}{-44}
Whakawehea ngā taha e rua ki te -44.
x=-\frac{39}{44}
Ka taea te hautanga \frac{39}{-44} te tuhi anō ko -\frac{39}{44} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}