Aromātai
\frac{14\sqrt{35}}{5}+5\approx 21.565023393
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 2 \cdot \sqrt { 343 } + \sqrt { 125 } } { \sqrt { 5 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\times 7\sqrt{7}+\sqrt{125}}{\sqrt{5}}
Tauwehea te 343=7^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{7^{2}\times 7} hei hua o ngā pūtake rua \sqrt{7^{2}}\sqrt{7}. Tuhia te pūtakerua o te 7^{2}.
\frac{14\sqrt{7}+\sqrt{125}}{\sqrt{5}}
Whakareatia te 2 ki te 7, ka 14.
\frac{14\sqrt{7}+5\sqrt{5}}{\sqrt{5}}
Tauwehea te 125=5^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 5} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{5}. Tuhia te pūtakerua o te 5^{2}.
\frac{\left(14\sqrt{7}+5\sqrt{5}\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{14\sqrt{7}+5\sqrt{5}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\left(14\sqrt{7}+5\sqrt{5}\right)\sqrt{5}}{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14\sqrt{7}\sqrt{5}+5\left(\sqrt{5}\right)^{2}}{5}
Whakamahia te āhuatanga tohatoha hei whakarea te 14\sqrt{7}+5\sqrt{5} ki te \sqrt{5}.
\frac{14\sqrt{35}+5\left(\sqrt{5}\right)^{2}}{5}
Hei whakarea \sqrt{7} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{14\sqrt{35}+5\times 5}{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14\sqrt{35}+25}{5}
Whakareatia te 5 ki te 5, ka 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}