Aromātai
\frac{117}{290}\approx 0.403448276
Tauwehe
\frac{3 ^ {2} \cdot 13}{2 \cdot 5 \cdot 29} = 0.40344827586206894
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 2 / 5 + 3 / 10 - 1 / 20 } { 2 / 3 + 1 / 9 + 5 / 6 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{4}{10}+\frac{3}{10}-\frac{1}{20}}{\frac{2}{3}+\frac{1}{9}+\frac{5}{6}}
Ko te maha noa iti rawa atu o 5 me 10 ko 10. Me tahuri \frac{2}{5} me \frac{3}{10} ki te hautau me te tautūnga 10.
\frac{\frac{4+3}{10}-\frac{1}{20}}{\frac{2}{3}+\frac{1}{9}+\frac{5}{6}}
Tā te mea he rite te tauraro o \frac{4}{10} me \frac{3}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{7}{10}-\frac{1}{20}}{\frac{2}{3}+\frac{1}{9}+\frac{5}{6}}
Tāpirihia te 4 ki te 3, ka 7.
\frac{\frac{14}{20}-\frac{1}{20}}{\frac{2}{3}+\frac{1}{9}+\frac{5}{6}}
Ko te maha noa iti rawa atu o 10 me 20 ko 20. Me tahuri \frac{7}{10} me \frac{1}{20} ki te hautau me te tautūnga 20.
\frac{\frac{14-1}{20}}{\frac{2}{3}+\frac{1}{9}+\frac{5}{6}}
Tā te mea he rite te tauraro o \frac{14}{20} me \frac{1}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{13}{20}}{\frac{2}{3}+\frac{1}{9}+\frac{5}{6}}
Tangohia te 1 i te 14, ka 13.
\frac{\frac{13}{20}}{\frac{6}{9}+\frac{1}{9}+\frac{5}{6}}
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{2}{3} me \frac{1}{9} ki te hautau me te tautūnga 9.
\frac{\frac{13}{20}}{\frac{6+1}{9}+\frac{5}{6}}
Tā te mea he rite te tauraro o \frac{6}{9} me \frac{1}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{13}{20}}{\frac{7}{9}+\frac{5}{6}}
Tāpirihia te 6 ki te 1, ka 7.
\frac{\frac{13}{20}}{\frac{14}{18}+\frac{15}{18}}
Ko te maha noa iti rawa atu o 9 me 6 ko 18. Me tahuri \frac{7}{9} me \frac{5}{6} ki te hautau me te tautūnga 18.
\frac{\frac{13}{20}}{\frac{14+15}{18}}
Tā te mea he rite te tauraro o \frac{14}{18} me \frac{15}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{13}{20}}{\frac{29}{18}}
Tāpirihia te 14 ki te 15, ka 29.
\frac{13}{20}\times \frac{18}{29}
Whakawehe \frac{13}{20} ki te \frac{29}{18} mā te whakarea \frac{13}{20} ki te tau huripoki o \frac{29}{18}.
\frac{13\times 18}{20\times 29}
Me whakarea te \frac{13}{20} ki te \frac{18}{29} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{234}{580}
Mahia ngā whakarea i roto i te hautanga \frac{13\times 18}{20\times 29}.
\frac{117}{290}
Whakahekea te hautanga \frac{234}{580} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}