Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(2+x\right)+4x-2\left(1-x\right)=x+12
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,3,6,12.
6+3x+4x-2\left(1-x\right)=x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2+x.
6+7x-2\left(1-x\right)=x+12
Pahekotia te 3x me 4x, ka 7x.
6+7x-2+2x=x+12
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 1-x.
4+7x+2x=x+12
Tangohia te 2 i te 6, ka 4.
4+9x=x+12
Pahekotia te 7x me 2x, ka 9x.
4+9x-x=12
Tangohia te x mai i ngā taha e rua.
4+8x=12
Pahekotia te 9x me -x, ka 8x.
8x=12-4
Tangohia te 4 mai i ngā taha e rua.
8x=8
Tangohia te 4 i te 12, ka 8.
x=\frac{8}{8}
Whakawehea ngā taha e rua ki te 8.
x=1
Whakawehea te 8 ki te 8, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}