Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1+i\right)\left(-1-i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, -1-i.
\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1\right)^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+3i\right)\left(-1-i\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)i^{2}}{2}
Me whakarea ngā tau matatini 2+3i me -1-i pēnā i te whakarea huarua.
\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{-2-2i-3i+3}{2}
Mahia ngā whakarea i roto o 2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right).
\frac{-2+3+\left(-2-3\right)i}{2}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -2-2i-3i+3.
\frac{1-5i}{2}
Mahia ngā tāpiri i roto o -2+3+\left(-2-3\right)i.
\frac{1}{2}-\frac{5}{2}i
Whakawehea te 1-5i ki te 2, kia riro ko \frac{1}{2}-\frac{5}{2}i.
Re(\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1+i\right)\left(-1-i\right)})
Me whakarea te taurunga me te tauraro o \frac{2+3i}{-1+i} ki te haumi hiato o te tauraro, -1-i.
Re(\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1\right)^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+3i\right)\left(-1-i\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)i^{2}}{2})
Me whakarea ngā tau matatini 2+3i me -1-i pēnā i te whakarea huarua.
Re(\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{-2-2i-3i+3}{2})
Mahia ngā whakarea i roto o 2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right).
Re(\frac{-2+3+\left(-2-3\right)i}{2})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -2-2i-3i+3.
Re(\frac{1-5i}{2})
Mahia ngā tāpiri i roto o -2+3+\left(-2-3\right)i.
Re(\frac{1}{2}-\frac{5}{2}i)
Whakawehea te 1-5i ki te 2, kia riro ko \frac{1}{2}-\frac{5}{2}i.
\frac{1}{2}
Ko te wāhi tūturu o \frac{1}{2}-\frac{5}{2}i ko \frac{1}{2}.