Aromātai
1+i
Wāhi Tūturu
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{2+2i}{1\times 1+1\left(-i\right)+i-i^{2}}
Me whakarea ngā tau matatini 1+i me 1-i pēnā i te whakarea huarua.
\frac{2+2i}{1\times 1+1\left(-i\right)+i-\left(-1\right)}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{2+2i}{1-i+i+1}
Mahia ngā whakarea i roto o 1\times 1+1\left(-i\right)+i-\left(-1\right).
\frac{2+2i}{1+1+\left(-1+1\right)i}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 1-i+i+1.
\frac{2+2i}{2}
Mahia ngā tāpiri i roto o 1+1+\left(-1+1\right)i.
1+i
Whakawehea te 2+2i ki te 2, kia riro ko 1+i.
Re(\frac{2+2i}{1\times 1+1\left(-i\right)+i-i^{2}})
Me whakarea ngā tau matatini 1+i me 1-i pēnā i te whakarea huarua.
Re(\frac{2+2i}{1\times 1+1\left(-i\right)+i-\left(-1\right)})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{2+2i}{1-i+i+1})
Mahia ngā whakarea i roto o 1\times 1+1\left(-i\right)+i-\left(-1\right).
Re(\frac{2+2i}{1+1+\left(-1+1\right)i})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 1-i+i+1.
Re(\frac{2+2i}{2})
Mahia ngā tāpiri i roto o 1+1+\left(-1+1\right)i.
Re(1+i)
Whakawehea te 2+2i ki te 2, kia riro ko 1+i.
1
Ko te wāhi tūturu o 1+i ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}