Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2+2i}{1\times 1+1\left(-i\right)+i-i^{2}}
Me whakarea ngā tau matatini 1+i me 1-i pēnā i te whakarea huarua.
\frac{2+2i}{1\times 1+1\left(-i\right)+i-\left(-1\right)}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{2+2i}{1-i+i+1}
Mahia ngā whakarea i roto o 1\times 1+1\left(-i\right)+i-\left(-1\right).
\frac{2+2i}{1+1+\left(-1+1\right)i}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 1-i+i+1.
\frac{2+2i}{2}
Mahia ngā tāpiri i roto o 1+1+\left(-1+1\right)i.
1+i
Whakawehea te 2+2i ki te 2, kia riro ko 1+i.
Re(\frac{2+2i}{1\times 1+1\left(-i\right)+i-i^{2}})
Me whakarea ngā tau matatini 1+i me 1-i pēnā i te whakarea huarua.
Re(\frac{2+2i}{1\times 1+1\left(-i\right)+i-\left(-1\right)})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{2+2i}{1-i+i+1})
Mahia ngā whakarea i roto o 1\times 1+1\left(-i\right)+i-\left(-1\right).
Re(\frac{2+2i}{1+1+\left(-1+1\right)i})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 1-i+i+1.
Re(\frac{2+2i}{2})
Mahia ngā tāpiri i roto o 1+1+\left(-1+1\right)i.
Re(1+i)
Whakawehea te 2+2i ki te 2, kia riro ko 1+i.
1
Ko te wāhi tūturu o 1+i ko 1.