Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}
Whakangāwaritia te tauraro o \frac{2+2\sqrt{3}}{\sqrt{3}-2} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}+2.
\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}
Whakaarohia te \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{3-4}
Pūrua \sqrt{3}. Pūrua 2.
\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{-1}
Tangohia te 4 i te 3, ka -1.
-\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
-\left(2\sqrt{3}+4+2\left(\sqrt{3}\right)^{2}+4\sqrt{3}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2+2\sqrt{3} ki ia tau o \sqrt{3}+2.
-\left(2\sqrt{3}+4+2\times 3+4\sqrt{3}\right)
Ko te pūrua o \sqrt{3} ko 3.
-\left(2\sqrt{3}+4+6+4\sqrt{3}\right)
Whakareatia te 2 ki te 3, ka 6.
-\left(2\sqrt{3}+10+4\sqrt{3}\right)
Tāpirihia te 4 ki te 6, ka 10.
-\left(6\sqrt{3}+10\right)
Pahekotia te 2\sqrt{3} me 4\sqrt{3}, ka 6\sqrt{3}.
-6\sqrt{3}-10
Hei kimi i te tauaro o 6\sqrt{3}+10, kimihia te tauaro o ia taurangi.