Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{2+\sqrt{5}}{2-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}
Pūrua 2. Pūrua \sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}
Tangohia te 5 i te 4, ka -1.
\frac{\left(2+\sqrt{5}\right)^{2}}{-1}
Whakareatia te 2+\sqrt{5} ki te 2+\sqrt{5}, ka \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+5}{-1}
Ko te pūrua o \sqrt{5} ko 5.
\frac{9+4\sqrt{5}}{-1}
Tāpirihia te 4 ki te 5, ka 9.
-9-4\sqrt{5}
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro. Hei kimi i te tauaro o 9+4\sqrt{5}, kimihia te tauaro o ia taurangi.