Aromātai
-4\sqrt{5}-9\approx -17.94427191
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{2+\sqrt{5}}{2-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}
Pūrua 2. Pūrua \sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}
Tangohia te 5 i te 4, ka -1.
\frac{\left(2+\sqrt{5}\right)^{2}}{-1}
Whakareatia te 2+\sqrt{5} ki te 2+\sqrt{5}, ka \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+5}{-1}
Ko te pūrua o \sqrt{5} ko 5.
\frac{9+4\sqrt{5}}{-1}
Tāpirihia te 4 ki te 5, ka 9.
-9-4\sqrt{5}
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro. Hei kimi i te tauaro o 9+4\sqrt{5}, kimihia te tauaro o ia taurangi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}