Aromātai
\frac{\sqrt{21}}{5}+\frac{2\sqrt{7}}{5}-\frac{3\sqrt{2}}{5}-\frac{3\sqrt{6}}{10}\approx 0.391440603
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 2 + \sqrt { 3 } } { 3 \sqrt { 2 } + 2 \sqrt { 7 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{\left(3\sqrt{2}+2\sqrt{7}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}
Whakangāwaritia te tauraro o \frac{2+\sqrt{3}}{3\sqrt{2}+2\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te 3\sqrt{2}-2\sqrt{7}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
Whakaarohia te \left(3\sqrt{2}+2\sqrt{7}\right)\left(3\sqrt{2}-2\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
Whakarohaina te \left(3\sqrt{2}\right)^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{9\times 2-\left(2\sqrt{7}\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-\left(2\sqrt{7}\right)^{2}}
Whakareatia te 9 ki te 2, ka 18.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-2^{2}\left(\sqrt{7}\right)^{2}}
Whakarohaina te \left(2\sqrt{7}\right)^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-4\left(\sqrt{7}\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-4\times 7}
Ko te pūrua o \sqrt{7} ko 7.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-28}
Whakareatia te 4 ki te 7, ka 28.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{-10}
Tangohia te 28 i te 18, ka -10.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{7}}{-10}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2+\sqrt{3} ki ia tau o 3\sqrt{2}-2\sqrt{7}.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{6}-2\sqrt{3}\sqrt{7}}{-10}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{6}-2\sqrt{21}}{-10}
Hei whakarea \sqrt{3} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-6\sqrt{2}+4\sqrt{7}-3\sqrt{6}+2\sqrt{21}}{10}
Me whakarea tahi te taurunga me te tauraro ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}